期刊文献+

Distinct influence of trimethylamine N-oxide and high hydrostatic pressure on community structure and culturable deep-sea bacteria 被引量:1

Distinct influence of trimethylamine N-oxide and high hydrostatic pressure on community structure and culturable deep-sea bacteria
下载PDF
导出
摘要 Trimethylamine N-oxide(TMAO)is one of the most important nutrients for bacteria in the deep-sea environment and is capable of improving pressure tolerance of certain bacterial strains.To assess the impact of TMAO on marine microorganisms,especially those dwelling in the deep-sea environment,we analyzed the bacterial community structure of deep-sea sediments after incubated under different conditions.Enrichments at 50 MPa and 0.1 MPa revealed that TMAO imposed a greater influence on bacterial diversity and community composition at atmospheric pressure condition than that under high hydrostatic pressure(HHP).We found that pressure was the primary factor that determines the bacterial community.Meanwhile,in total,238 bacterial strains were isolated from the enrichments,including 112 strains a ffiliated to 16 genera of 4 phyla from the Yap Trench and 126 strains a ffiliated to 11 genera of 2 phyla from the Mariana Trench.Treatment of HHP reduced both abundance and diversity of isolates,while the presence of TMAO mainly af fected the diversity of isolates obtained.In addition,certain genera were isolated only when TMAO was supplemented.Taken together,we demonstrated that pressure primarily defines the bacterial community and culturable bacterial isolates.Furthermore,we showed for the first time that TMAO had distinct influences on bacterial community depending on the pressure condition.The results enriched the understanding of the significance of TMAO in bacterial adaptation to the deep-sea environment. Trimethylamine N-oxide(TMAO) is one of the most important nutrients for bacteria in the deep-sea environment and is capable of improving pressure tolerance of certain bacterial strains.To assess the impact of TMAO on marine microorganisms,especially those dwelling in the deep-sea environment,we analyzed the bacterial community structure of deep-sea sediments after incubated under different conditions.Enrichments at 50 MPa and 0.1 MPa revealed that TMAO imposed a greater influence on bacterial diversity and community composition at atmospheric pressure condition than that under high hydrostatic pressure(HHP).We found that pressure was the primary factor that determines the bacterial community.Meanwhile,in total,238 bacterial strains were isolated from the enrichments,including 112 strains a ffiliated to 16 genera of 4 phyla from the Yap Trench and 126 strains a ffiliated to 11 genera of 2 phyla from the Mariana Trench.Treatment of HHP reduced both abundance and diversity of isolates,while the presence of TMAO mainly af fected the diversity of isolates obtained.In addition,certain genera were isolated only when TMAO was supplemented.Taken together,we demonstrated that pressure primarily defines the bacterial community and culturable bacterial isolates.Furthermore,we showed for the first time that TMAO had distinct influences on bacterial community depending on the pressure condition.The results enriched the understanding of the significance of TMAO in bacterial adaptation to the deep-sea environment.
出处 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2020年第2期364-377,共14页 海洋湖沼学报(英文)
基金 Supported by the National Natural Science Foundation of China(Nos.91751108,91751202,41806174,41506147) the National Key Research and Development Program of China(Nos.2016YFC0302502,2016YFC0304905,2018YFC0309904) the Sanya Municipal(Nos.2018YD01,2018YD02) the grant for LIA-Mag MC from the Centre National de la Recherche Scientifique
关键词 deep-sea bacteria high hydrostatic pressure(HHP) trimethylamine N-oxide(TMAO) community structure deep-sea bacteria high hydrostatic pressure (HHP) trimethylamine N-oxide (TMAO) community structure
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部