摘要
A second-law thermodynamic analysis was conducted for stoichiometric premixed dimethyl ether(DME)/hydrogen(H2)/air flames at atmospheric pressure.The exergy losses from the irreversibility sources,i.e.,chemical reaction,heat conduction and species diffusion,and those from partial combustion products were analyzed in the flames with changed fuel blends.It is observed that,regardless of the fuel blends,chemical reaction contributes most to the exergy losses,followed by incomplete combustion,and heat conduction,while mass diffusion has the least contribution to exergy loss.The results also indicate that increased H2 substitution decreases the exergy losses from reactions,conduction,and diffusion,primarily because of the flame thickness reduction at elevated H2 substitution.The decreases in exergy losses by chemical reactions and heat conduction are higher,but the exergy loss reduction by diffusion is slight.However,the exergy losses from incomplete combustion increase with H2 substitution,because the fractions of the unbumed fuels and combustion intermediates,e.g.,H2 and OH radical,increase.The overall exergy losses in the DME/H2 flames decrease by about 5%with increased H2 substitution from 0%to 100%.
基金
the National Natural Science Foundation of China(Grant No.51776124)
Key Laboratory of Low-Grade Energy Utilization Technologies&Systems of MOE(Grant No.LLEUTS-201803).