期刊文献+

流量的集成学习与重采样均衡分类方法 被引量:3

Resampling and Boosting Techniques for Balanced Traffic Classification
下载PDF
导出
摘要 针对传统基于机器学习的流量分类方法中数据不均衡影响分类效果的问题,提出了一种基于重采样的梯度增强树算法。该算法利用流量数据的统计特征,通过回溯搜索策略优化特征集合并设计适用于流量分类的树结构参数,构造最优模型;利用结合重采样的LightGBM算法修正数据不平衡性并进行分类测试。经实验验证,该算法提高了不平衡数据的分类效果,并且具有性能稳定、快速的优点。 Since the data imbalance affects the accuracy of the traffic classification based on machine learning,a traffic classification algorithm based on ensemble learning and resampling RES-LGBM is tailored.The algorithm uses statistical features of traffic flows,and optimizes the feature set by backtracking search method.After determination of optimal tree structure,the RES-LGBM is employed to eliminate the data imbalance and test the classification result.The test result shows that the algorithm enhances the classification of imbalanced data with high efficiency and stablility.
作者 顾兆军 吴优 赵春迪 周景贤 GU Zhaojun;WU You;ZHAO Chundi;ZHOU Jingxian(Information Security Evaluation Center of Civil Aviation,Civil Aviation University of China,Tianjin 300300,China;Sino-European Institute of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China;College of Computer Science and Technology,Civil Aviation University of China,Tianjin 300300,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第6期86-91,共6页 Computer Engineering and Applications
基金 民航安全能力建设项目(No.PESA170003,No.PESA2018082) 中央高校基本科研业务费中国民航大学专项(No.3122018C036)
关键词 机器学习 集成学习 数据不平衡 网络流量 重采样 machine learning ensemble learning data imbalance network flow resampling
  • 相关文献

参考文献5

二级参考文献157

  • 1Internet Assigned Numbers Authority(IANA).http://www.iana.org/assignments/port-numbers,August 28,2010. 被引量:1
  • 2Moore A W,Papagiannaki D.Toward the accurate Identification of network applications[C]∥Proc.6th Passive Active Measurement.Workshop(PAM),2005,3431:41-54. 被引量:1
  • 3Sen S,Spatscheck O,Wand D.Accurate,scalable in-networkidentification of P2P traffic using application signatures[C]∥Proceedings of the 13th International World Wide Web Confe-rence on Alternate Track Papers & Posters(WWW'04).New York,NY,USA,ACM,2004:512-521. 被引量:1
  • 4Karagiannis T,Papagiannaki K,Faloutsos M.BLINC:Multilevel traffic classification in the dark[C]∥ACM SIGCOMM.Phila-delphia,PA,USA,2005. 被引量:1
  • 5Roughan M,Sen S,Spatscheck O,et al.Class-of-service mapping for QoS:A statistical signature-based approach to IP traffic classification[C]∥Proceedings of ACM SIGCOMM Internet Mea-surement Conference.Taormina,Sicily,Italy,2004. 被引量:1
  • 6Moore A W,Zuev D.Internet Traffic Classification UsingBayesian Analysis Techniques[C]∥Proceedings of ACM SIGMETRICS International Conference on Measurement and Mo-deling of Computer Systems.New York,USA,2005. 被引量:1
  • 7McGregor A,Hall M,Lorier P,et al.Flow Clustering UsingMachine Learning Techniques[C]∥Proceedings of PAM'04.Antibes Juan-les-Pins,France,2004. 被引量:1
  • 8Zander S,Nguyen T,Armitage G.Self-Learning IP Traffic Classification Based on Statistical Flow Characteristics[C]∥Proceedings of PAM'05.Boston,USA,2005. 被引量:1
  • 9Erman J,Arlitt M,Mahanti A.Traffic Classification Using Clustering Algorithms[C]∥Proceedings of SIGCOMM Workshop on Mining Network Data.Pisa,Italy,2006. 被引量:1
  • 10Dainotti A,Pescape A,Sansone C.Issues and Future Directions in Traffic Classification[J].IEEE Network,2012,26(1):35-40. 被引量:1

共引文献148

同被引文献26

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部