摘要
为了解决电磁式小型霍普金森杆装置加载速度不够高、加载应力波脉宽受限制等问题,对装置的电磁线圈发射系统、供能系统和结构进行改进和优化,提出了多级多绕式串并联线圈阵列发射结构,不但极大提高了子弹发射速度,加载应力波脉宽可方便调节,且简化了多级发射感应元器件结构;采用"锂电池+升压模块"结合电容组的两级储能结构设计,既提高了高电压安全性,又便于重复使用;此外,提出了一种便于杆件调节和对中的新型套管结构。基于上述三大部分的改进和优化,研制了调节范围广、集成度高、结构紧凑、安全便捷的电磁式小型霍普金森杆装置。借助研制的装置,对基于SLM金属3D工艺制得的316L不锈钢材料进行了动态力学性能测试,实验证明了该材料具有应变率敏感特性,应变率在5800s-1时,屈服强度比静态提高约60%,但是加工方向对动态力学性能影响不明显。
To overcome the limitations of insufficient loading speed and restricted stress wave width of the mini-SHPB device, the electromagnetic emission system, energy supply system and structure are improved and optimized. The series-parallel coil array emission structure is proposed, which can not only greatly improve the bullet emission speed, but also facilitate the adjustment of the stress wave width, and simplify the structure of the multi-stage emission sensing component. The two-stage energy storage structure comprised of "lithium battery + boost module" and the capacitor group is beneficial to improving security and reuse. In addition, a new casing structure which facilitates the adjustment and centering is proposed. Based on the above three major improvements and optimizations, the electromagnetic mini-SHPB device is developed with wide adjustment range, high integration, compact structure, safety and convenience. By the developed device, the dynamic mechanical properties of 316 L stainless steel based on SLM process are tested. The experimental results show that the material is strain-rate sensitive. When the strain rate is 5800 s-1, the yield strength is increased by about 60% than that of static state, but the processing direction has no obvious effect on dynamic mechanical properties.
作者
张驰涛
刘战伟
汪小明
蔡苏
ZHANG Chi-tao;LIU Zhan-wei;WANG Xiao-ming;CAI Su(Department of Mechanics,School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处
《实验力学》
CSCD
北大核心
2020年第1期18-26,共9页
Journal of Experimental Mechanics
基金
国家自然科学基金(NO.11372037)
北京市自然科学基金(NO.1192014)
关键词
小型霍普金森杆
电磁发射技术
选择性激光熔化技术
动态力学性能
高应变率
mini-SHPB device
electromagnetic emission technique
selective laser melting(SLM)
dynamic mechanical properties
high strain rate