期刊文献+

侧铣加工刀具回转轮廓误差预测技术研究 被引量:1

Research on Prediction Technology for Tool Rotation Profile Errors in Flank Milling
下载PDF
导出
摘要 在侧铣加工中,刀具磨损和变形引起的刀具回转轮廓误差在实际加工前难以准确预测。提出一种工件形状刀具轮廓映射的辨识试验方法来获取加工过程刀具回转轮廓误差,并通过多因素正交试验获取了不同工况下刀具回转轮廓误差数据库。基于误差数据,采用最小二乘支持向量机(LS-SVM)技术建立了刀具回转轮廓误差预测模型。运用遗传算法优化对所提模型有重要影响的核函数参数和错误惩罚因子,建立了基于遗传算法优化的最小二乘支持向量机(GA-LS-SVM)模型,并与未经遗传算法优化的LS-SVM模型进行了对比,试验结果表明,GA-LS-SVM预测模型能更好地适用于刀具回转轮廓误差预测。 In the flank milling processes,it is difficult to accurately predict the tool rotation profile errors caused by tool wears and deformations before actual machining.A identification test method of workpiece shape-tool profile mapping was proposed to obtain the tool rotation profile errors and the error data under different working conditions were obtained through the multi-factor orthogonal tests.A prediction model for tool rotation profile error was established by the LS-SVM technology based on the error data.The genetic algorithm(GA)was used to optimize the model parameters including kernel function parameters and error warning factors,which were very important to the proposed model.A LS-SVM model was established based on GA optimization(GA-LS-SVM),which was compared with a LS-SVM model without GA optimization.The testing results show that the GA-LS-SVM prediction model is more suitable for tool rotation profile error prediction.
作者 余杭卓 秦圣峰 丁国富 江磊 梁红琴 YU Hangzhuo;QIN Shengfeng;DING Guofu;JIANG Lei;LIANG Hongqin(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu,610031;School of Design,Northumbria University,Newcastle,NE18ST)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2020年第3期306-313,共8页 China Mechanical Engineering
基金 工信部2016年智能制造综合标准化与新模式应用项目(2016ZNZZ01-05)
关键词 侧铣 刀具回转轮廓误差 最小二乘支持向量机 预测模型 flank milling tool rotation profile error least squares support vector machine(LS-SVM) prediction model
  • 相关文献

参考文献6

二级参考文献49

共引文献84

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部