期刊文献+

Mg-ZnO复合物的紫外光催化效率及协同作用研究 被引量:4

Excellent Ultraviolet Photocatalytic Efficiency of Mg2+ Doped ZnO and Analysis on Its Synergetic Effect
下载PDF
导出
摘要 采用化学沉淀法合成了一系列Mg-ZnO光催化剂.研究了在Mg 2+和MgO绝缘介质共同作用下Mg-ZnO光催化剂的活性.结果表明,紫外光照射5 min后,10%Mg-ZnO复合物对10 mg/L RhB的降解率达到81.3%,光降解速率常数为0.3271 min-1,是纯ZnO的3.42倍.瞬态光电压(TPV)\,接触电势差\,表面光电流(SPC)和Cr(Ⅵ)还原等实验结果表明,MgO绝缘颗粒的形成抑制了ZnO中光生电子的“逆向”传输,使电子和空穴的复合时间延长,从而间接提高了光生空穴的利用率. A series of Mg-doped ZnO samples were synthesized via a facile chemical precipitation method.Mg 2+was effectively doped into the lattice of ZnO and MgO particles formed on the surface of ZnO when the Mg doping content exceeded 5%.Under the combined action of Mg 2+and MgO insulators,the degradation rate of RhB over 10%Mg-ZnO photocatalyst was 81.3%in 5 min under ultraviolet light and the degradation rate constant was 0.3271 min-1,which was 3.42 times that of pure ZnO(0.0957 min-1).The transient photovoltage(TPV)and the contact potential difference(ΔCPD)measurements directly demonstrated that the incorporation of Mg 2+decreased the work function of ZnO and increased the number of electrons in the conduction band,thus the separation efficiency of photogenerated electrons and holes can be improved.The surface photocurrent(SPC)and the Cr(Ⅵ)reduction experiments showed that the formation of MgO insulating particles inhibited the“reverse”transmission of photogenerated electrons in ZnO,which prolonged the recombination time of electrons and holes,thus indirectly improved the utilization of photogenerated holes.This work provides a new idea for the design of highly efficient photocatalytic materials.
作者 赵鹏 张晋腾 林艳红 ZHAO Peng;ZHANG Jinteng;LIN Yanhong(College of Chemistry,Jilin University,Changchun 130012,China)
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2020年第3期538-547,共10页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21872063,51572106,21773086)资助~~
关键词 镁掺杂氧化锌 光催化 协同作用 光生电荷行为 Mg doped ZnO Photocatalysis Synergetic effect Photogenerated charges behavior
  • 相关文献

参考文献3

二级参考文献43

  • 1Afzaal M;Malik M A;O' Brien P.查看详情[J],{H}New Journal of Chemistry20072029-2040. 被引量:1
  • 2Dong Z H;Lai X Y;Halpert J E;Yang N L Yi L X Zhai J Wang D Tang Z Y Jiang L.查看详情[J],{H}Advanced Materials2012(08):1046-1049. 被引量:1
  • 3Omidi A;Habibi-Yangjeh A.查看详情[J],{H}Applied Surface Sinence2013468-475. 被引量:1
  • 4Sahu D R;Lin S Y;Huang J L.查看详情[J],{H}Applied Surface Sinence2006(20):7509-7514. 被引量:1
  • 5Kim A;Won Y;Woo K;Hu P Wang Z Zhang M Shi L.查看详情[J],ACS Nano2013(02):1081-1091. 被引量:1
  • 6Georgekutty R;Seery M K;Pillai S C.查看详情[J],J Phys Chem C2008(35):13563-13570. 被引量:1
  • 7Shvalagin V V;Stroyuk A L;Kuchmii S Y.查看详情[J],{H}Journal of Nanoparticle Research2007(03):427-440. 被引量:1
  • 8Zheng Y H;Chen C Q;Zhan Y Y;Lin X Y Zheng Q Wei K M Zhu J F.查看详情[J],J Phys Chem C2008(29):10773-10776. 被引量:1
  • 9Xu Y G;Xu H;Li H M;Xia J X Liu C T Liu L.查看详情[J],J AlloysCompd2011(07):3286-3292. 被引量:1
  • 10Li F;Yuan Y L;Luo J Y;Qin Q H Wu J F Li Z Huang X T.查看详情[J],{H}Applied Surface Sinence2010(20):6076-6082. 被引量:1

共引文献40

同被引文献50

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部