期刊文献+

基于隐式低秩非负矩阵分解模型的人脸识别方法

Method of face recognition based on latent low-rank non-negative matrix factorization model
下载PDF
导出
摘要 针对非负矩阵分解(NMF)具有一定的稀疏性,但不足以进行有效的分类的问题,为了获得特征提取过程中缺失的高维数据结构信息和隐藏信息,提高非负矩阵分解的低秩性与稀疏性,提出一种基于隐式低秩表示的非负矩阵分解模型(NLatMF)。该模型将隐式低秩算法提取的原始数据非负的低秩部分和隐式部分应用于非负矩阵分解,更有效地解决了分类问题。将该模型用于图像分类,通过在Yaleface等人脸数据库上仿真,结果表明:新模型有效提高了识别率。 Aiming at the problem that non-negative matrix factorization(NMF)has certain sparsity,but it is not enough for effective classification,in order to obtain high-dimensional data structure information and hidden information missing in the feature extraction process,improve the low rank and sparsity of the non-negative matrix factorization,a non-negative matrix factorization model based on latent low-rank representation(NLatMF)is proposed.Non-negative low-rank part and latent parts of the original data extracted by latent low-rank algorithm,applied to NMF,which solves classification problem more effectively.The improved model is used for image classification and the results show that the new model can improve the recognition rate effectively by simulating on the face database such as Yalefaces.
作者 杨国亮 龚曼 YANG Guoliang;GONG Man(School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《传感器与微系统》 CSCD 2020年第3期57-60,63,共5页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61763015,51365017,61305019)。
关键词 非负矩阵分解 特征提取 隐式低秩表示 稀疏性 图像分类 non-negative matrix factorization(NMF) feature extraction latent low-rank representation sparseness image classification
  • 相关文献

参考文献5

二级参考文献27

  • 1Lee D D, Seung H S. Algorithms for Nonnegative Matrix Factorization [J]. Adv Neural Info Process Sys, 2000, 12 :556-562. 被引量:1
  • 2Li S Z, HOU Xinwen, ZHANG Hongjiang, et al. Learning Spatially Localized Parts-Based Representation [C]// Proceedings of 2001 IEEE Computer Vision and Pattern Recognition. Hawaii: [s. n. ], 2001:207-212. 被引量:1
  • 3Hoyer P O. Non-negative Matrix Factorization with Sparseness Constraints [J].J Mach Learn Res, 2004, 5: 1457-1469. 被引量:1
  • 4ZHANG Miao, BU Jiajun, CHEN Chun, et al. Graph Regularized Sparse Coding for Image Representation[J]. IEEE Trans Image Process, 2011, 20(5): 1327-1336. 被引量:1
  • 5XU Zongben, CHANG Xiangyu, XU Fengmin, et al. L1/2 Regularization: A Thresholding Representation Theory and a Fast Solver [J].IEEE Trans Neural Network and Learning Systems, 2012, 23(7): 1013-1027. 被引量:1
  • 6QIAN Yuntao, JIA Sen, ZHOU Jun, et al. Hyperspeetral Unmixing via L1/2 Sparsity-Constrained Nonnegative Matrix Factorization [J]. IEEE Trans Geo Remote Se, 2011, 49(11) : 4282-4297. 被引量:1
  • 7LU Xiaoqiang, WU Hao, YUAN Yuan, et al. Manifold Regularized Sparse NMF for Hyperspectral Unmixing [J]. IEEETrans Geo RemoteSe, 2013, 51(5): 2815-2826. 被引量:1
  • 8Krishnan D, Fergus R. Fast Image Deconvolution Using Hyper-Laplacian Priors [C]//Neural Information Processing Systems. Cambridge: MIT Press, 2009: 1033-1041. 被引量:1
  • 9Wright S, Nowak R, Figueiredo M. Sparse Reconstruction by Separable Approximation [J]. IEEE Trans Signal Processing, 2009, 57(7): 2479-2493. 被引量:1
  • 10CAI Deng, HE Xiaofei, HAN Jiawei, et al. Graph Regularized Non-negative Matrix Factorization for Data Representation [J].IEEE Trans Pattern Anal Maeh Intel, 2011, 33(8) : 1548-1560. 被引量:1

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部