期刊文献+

基于排名学习和多源信息的地图匹配方法 被引量:5

An information fusion map matching method based on ranking learning
下载PDF
导出
摘要 融合多源信息能有效提高地图匹配的准确率。已有的地图匹配方法依赖于数学模型,当引入新类型的数据时,需要重新设计数学模型或调整模型参数。为解决该问题,提出了一种端到端的数据驱动地图匹配方法。该方法不需要建立具体的数学模型,只需从匹配结果已知的数据中学习候选道路的评分函数:选出某GPS点的候选道路,利用评分函数对所有候选道路进行打分,选择分数最高的道路作为地图匹配结果。实验结果表明,该方法能直接利用新类型的数据提高地图匹配的准确率,能在数据缺失时避免准确率急剧降低。此外,具有与基于HMM方法相近的准确率和与基于夹角特征和距离特征方法相当的速度。 Fusion of multi-source information can effectively improve the accuracy of map matching results.Existing map matching methods rely on mathematical models.When new types of data are introduced,it is necessary to design a new mathematical model or adjust the complex parameters of those model in order to obtain the best map matching results.To solve the problem,this paper proposes an end-to-end data-driven map matching method.Instead of establishing a specific mathematical model,our method uses a neural network to learn a scoring function of the candidate roads from the data with the matching results by the ranking learning method.During matching,the method first selects all the roads near the GPS point as candidate roads;then uses the scoring function to score and sort all the candidate roads;finally selects the road with highest score as the map matching result.The experimental results demonstrate that the proposed method can effectively use new types of data and adapt to data missing conditions so as to achieve improvement or avoid sharp drop in accuracy.On the other hand,with the accuracy close to the HMM-based method,and the run time close to the angle-and distances-feature-based method.
作者 卢家品 罗月童 黄兆嵩 张延孔 陈为 LU Jiapin;LUO Yuetong;HUANG Zhaosong;ZHANG Yankong;CHEN Wei(School of Computer Science and Information Technology,Hefei University of Technology,Hefei 230601,China;College of Computer Science and Technology,Zhejiang University,Hangzhou 310058,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2020年第1期27-35,66,共10页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(61602146) 安徽省科技强警项目(1704d0802177)
关键词 地图匹配 轨迹数据预处理 排名学习 深度神经网络 地理信息系统 map matching trajectory data preprocessing ranking learning deep neural networks geographic information system
  • 相关文献

同被引文献37

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部