期刊文献+

一种基于追踪算法的干扰对消技术

An Interference Cancellation Technique Based on Pursuit Algorithm
下载PDF
导出
摘要 无人机等小型平台上的雷达干扰机的收发隔离问题会严重影响其侦察与接收同时工作。假设真实耦合路径稀疏的环境下,基础的系统辨识最小方差无偏估计量算法在解决收发隔离问题时,对系统传递函数的辨识精度不够,隔离效果不够理想。针对此问题提出了一种基于系统辨识理论与稀疏理论相结合的追踪算法。该算法利用了干扰机接收天线与发射天线之间干扰耦合路径的稀疏性,可以对耦合路径实现精确辨识,并且算法的鲁棒性较好。理论分析和仿真结果表明:稀疏时不变的耦合环境下,该方法能够取得较理想的隔离度,可以很好地解决小型平台上雷达干扰机的收发隔离问题。 The problem of sending and receiving isolation of radar jammers on small platforms will seriously affect the detection and reception at the same time. Under the assumption that the real coupled path is sparse, the basic system identification minimum varizance unbiased algorithm is not accurate enough to identify the system transfer function and the isolation effect is not ideal. A pursuit algorithm based on the combination of system identification theory and sparse theory is proposed. This algorithm makes use of the sparsity of the interference coupling path between the receiving antenna and the transmitting antenna of the jammer, which can realize accurate identification of the coupling path, and the algorithm is robust. Theoretical analysis and simulation results show that this method can achieve ideal isolation under the condition of sparse time-invariant coupling, and can solve the problem of sending and receiving isolation of radar jammers on small platforms.
作者 郝治理 刘春生 周青松 李磊 HAO Zhili;LIU Chunsheng;ZHOU Qingsong;LI Lei(Electronic Engineering College,National University of Defense Technology,Hefei 230037,China)
出处 《现代雷达》 CSCD 北大核心 2020年第1期86-90,共5页 Modern Radar
关键词 收发隔离 系统辨识 稀疏 追踪算法 transceiver isolation system identification sparse pursuit algorithm
  • 相关文献

参考文献4

二级参考文献18

  • 1刘国岁,孙光民,顾红,朱晓华.连续波雷达及其信号处理技术[J].现代雷达,1995,17(6):20-36. 被引量:30
  • 2OPPENHEIM A,VEINSTEIN E, ZANGI K. Single Sensor Active Noise Cancellation [ J]. IEEE Transactions on Speech and Audio Processing, 1994, 1 (4) :285 - 290. 被引量:1
  • 3MANOLAKIS G D, INGLE V K, KOGON S M. Statistical and Adaptive Signal Processing [ M ]. Beijing: Tsinghua University Press, 2003. 被引量:1
  • 4Paulo S Rdiniz.自适应滤波算法与实现[M].刘郁林,景晓兵,谭刚兵,等,译.2版.北京:北京电子工业出版社,2004. 被引量:1
  • 5HAYKIN S, Adaptive Filter Theory [ M ]. N J: Prentice Hall, 2002. 被引量:1
  • 6WIDROW B,STREARNS S D. Adaptive Signal Processing [ M ]. N J: Prentice Hall, Englewood Cliffs, 1985. 被引量:1
  • 7Steven M K.统计信号处理基础[M].罗鹏飞,译.北京:电子工业出版社,2012. 被引量:1
  • 8Benesty J,Rey H, Rey V L,et al. A nonparametric VSSNLMS algorithm [ J ]. IEEE Signal Processing Letters,2006,13(10):581-584. 被引量:1
  • 9Huang H C, Lee J. A new variable step-size NLMS algo-rithm and its performance analysis [ J ]. IEEE Transactionon Signal Processing,2012,60 ( 4 ) : 2055-2056. 被引量:1
  • 10Udrea R M,Paleologu C,Benesty J, et al. Estimation of thenoise power in the NPVSS-NLMS algorithm [ C ]// 2010 9thInternational Symposium on Electronics and Telecommunicai-tons(ISETC). Timisoara: IEEE Press, 2010: 385-388. 被引量:1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部