期刊文献+

融合多源数据的非线性退化建模与剩余寿命预测 被引量:13

Multi-source data fusion for nonlinear degradation modeling and remaining useful life prediction
下载PDF
导出
摘要 针对目前基于单个传感器剩余寿命预测方法存在预测精度不高的问题,该文提出一种融合多源传感器数据的非线性退化建模与剩余寿命预测方法。该方法包括复合健康指标的构建、模型参数的估计和传感器融合系数的确定,在确定融合系数后,结合设备历史寿命数据与实时监测数据,利用Bayesian参数更新公式推导出设备的剩余寿命概率分布,实现设备的剩余寿命在线预测。最后通过由商用模块化航空推进系统仿真生成的发动机退化数据集进行仿真实验,结果表明该文所提方法能够有效提高设备剩余寿命预测的准确性。 Aiming at the problem that the remaining useful life prediction accuracy is not high based on the single sensor’s signals,the article proposes a remaining useful life prediction method for equipment which is modeled by nonlinear degradation model fusing multi-sensors data.The method includes the construction of a composite health indicator,estimation of model parameters,and determination of sensors’fusion coefficients.After determining the fusion coefficient,combined with historical life data and real-time monitoring data of equipment,the Bayesian parameter update is used to derive the remaining useful life probability distribution,and then realize the online remaining useful life prediction of a equipment.Finally,the simulation experiment is carried out by the engine degradation data set generated by commercial modular aero-propulsion system simulation.The results show that the proposed method can effectively improve the accuracy of engine’s remaining useful life prediction.
作者 任子强 司小胜 胡昌华 王玺 裴洪 REN Ziqiang;SI Xiaosheng;HU Changhua;WANG Xi;PEI Hong(School of Missile Engineering,Rocket Force University of Engineering,Xi’an 710025,China)
出处 《中国测试》 CAS 北大核心 2020年第2期1-8,共8页 China Measurement & Test
基金 国家自然科学基金(61833016,61573365)
关键词 复合健康指标 非线性退化模型 贝叶斯参数更新 剩余寿命预测 composite health indicator nonlinear degradation model Bayesian parameter update remaining useful life prediction
  • 相关文献

参考文献7

二级参考文献38

共引文献139

同被引文献119

引证文献13

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部