期刊文献+

基于机器学习的神经精神疾病辅助诊断研究进展 被引量:9

Advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning
下载PDF
导出
摘要 神经影像技术被广泛应用于研究大脑结构和功能异常与神经精神疾病之间的相关性。与传统的统计学分析方法不同,机器学习模型能对神经影像学数据进行个体化预测,发掘潜在的生物学标记物。神经精神疾病辅助诊断包含数据预处理和机器学习算法。数据预处理是一种人为的特征工程,为机器学习算法提供量化特征;机器学习算法包含特征降维、模型训练和模型评估。鲁棒的机器学习算法可以实现对不同数据集的准确预测,并提供对预测结果贡献大的特征,作为潜在的生物学标记物。本文综述了近年来基于机器学习的神经精神疾病辅助诊断研究进展,从数据预处理、机器学习算法和生物学标记物3个角度进行介绍,并展望未来的研究方向。 Neuroimaging techniques are widely used to study the correlations between brain structural/functional abnormalities and neuropsychiatric diseases.Different from traditional statistical analysis methods,machine learning model can realize individualized prediction from neuroimaging data and exploit potential biomarkers.The auxiliary diagnosis of neuropsychiatric diseases includes data preprocessing and machine learning algorithms.Data preprocessing is a kind of artificial feature engineering,providing quantitative features for machine learning algorithms;and machine learning algorithms include feature dimensionality reduction,model training and model evaluation.Robust machine learning algorithms can accomplish accurate predictions for different datasets and provide features that contribute significantly to the prediction as potential biomarkers.Herein the recent advances in auxiliary diagnosis of neuropsychiatric diseases based on machine learning are summarized,including data preprocessing,machine learning algorithms and biomarkers found in previous studies.Finally,the research direction in the future is discussed.
作者 雷炳业 潘嘉瑜 吴逢春 陆小兵 宁玉萍 陈军 吴凯 LEI Bingye;PAN Jiayu;WU Fengchun;LU Xiaobing;NING Yuping;CHEN Jun;WU Kai(Department of Biomedical Engineering,School of Material Science and Engineering,South China University of Technology,Guangzhou 510006,China;Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders,Guangzhou 510370,China;the Affiliated Brain Hospital of Guangzhou Medical University(Guangzhou Huiai Hospital),Guangzhou 510370,China;Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia,Guangzhou 510500,China;National Engineering Technology Research Center for Healthcare Devices,Guangzhou 510500,China)
出处 《中国医学物理学杂志》 CSCD 2020年第2期257-264,共8页 Chinese Journal of Medical Physics
基金 国家自然科学基金(31771074) 广东省前沿与关键技术创新专项资金(2016B010108003) 广东省公益研究与能力建设专项资金(2016A020216004) 广东省协同创新与平台环境建设专项资金(2017A040405059) 广州市产学研协同创新重大专项(201604020170,201704020168,201704020113,201807010064)
关键词 神经精神疾病 神经影像 机器学习 辅助诊断 neuropsychiatric disease neuroimaging machine learning auxiliary diagnosis
  • 相关文献

参考文献7

二级参考文献69

  • 1王曙燕,周明全,耿国华.医学图像的关联规则挖掘方法研究[J].计算机应用,2005,25(6):1408-1409. 被引量:10
  • 2贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 3Kawashima R,Roland P.O,Sullivan B.Fields in human motor areas involved in preparation for reaching, actual reaching,and visuomotor learning: A PET study[J]. J Neurosci, 1994,14:3426-3474. 被引量:1
  • 4Marchal G, Serrati C, Baron J, et al. PET imaging of cerebral perfusion and oxygen consumption in acute ischaemic stroke:Relation to outcome[J]. Lancet,1993,341: 925-927. 被引量:2
  • 5Kushner M, Reivich M, Fieschi C, et al. Metabolic and clinical correlates of acute ischemic infarction [J]. Neurology,1987,37:1103-1110. 被引量:2
  • 6Heiss WD, Emunds HG, Herbolz K.Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke[J]. Stroke,1993,24:1784-1788. 被引量:2
  • 7Giubilei F, Lenzi G, Dipiero V, et al.Predictive value of brain perfusion single-photon emission computed tomography in acute ischemic stroke[J]. Stroke, 1990,21: 895-900. 被引量:2
  • 8Wasserman E, Fuhr P, Cohen L, et al. Effects of transcranial magnetic stimulation on ipsilateral muscles [J]. Neurology, 1991,41:1795-1799. 被引量:1
  • 9Palmer E, Ashby P, Hajek V.Ipsilateral fast corticospinal pathways do not account for recovery in stroke[J]. Ann Neurol, 1992,32: 519-525. 被引量:2
  • 10Carr L, Harrison L, Evans A,et al. Patterns of central motor reorganization in hemiplegic cerebral palsy [J]. Brain,1993,116:1223- 1247. 被引量:1

共引文献52

同被引文献91

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部