摘要
为研究进气相对湿度在变工况下的影响,提出相对湿度-电流(relative humidity-current,RHC)模型。该模型根据局部压力比和气体物质的量比相同的原理,考虑了阳极水的摩尔流量对电流的影响,进而得出相对湿度-电流公式。使用Gambit软件建立燃料电池相对湿度-电流模型,把相对湿度-电流模型通过自定义函数导入到流体仿真软件Fluent中进行计算。自行搭建燃料电池的测试系统,在工作温度为60℃、进气气体的相对湿度(relative humidity,RH)分别为75%和100%的条件下进行测试,然后对仿真结果和实验结果进行对比分析。结果表明:燃料电池的性能会随着相对湿度的增加而改善;当电池在工作温度为60℃、相对湿度为75%、电流密度约为296 mA/cm^2时, RHC模型仿真计算值的精确度比Fluent模型计算值提高了14.6%。
In order to study the influence of relative humidity of intake air under variable working conditions, a relative humidity-current(RHC) model was proposed. According to the principle that the partial pressure ratio and the gas molar ratio are the same, the model considered the influence of the molar flow rate of the anode water on the current, and then derived the relative humidity-current formula. The fuel cell relative humidity-current model was established using Gambit software, and the relative humidity-current model was imported into the fluid simulation software Fluent through a custom function for calculation. The test was carried out under the conditions of a working temperature of 60 ℃ with a relative humidity(RH) of the intake gas of 75% and 100% respectively, by a self-design fuel cell testing system. Then the simulation results were compared and analyzed with the experimental ones. The results show that the performance of fuel cell will be improved with the increase of relative humidity. When the temperature is 60 ℃ with the relative humidity 75% and the current density 296 mA/cm^2, the accuracy of RHC simulation value is 14.6% higher than that of fluent model.
作者
贾坤晗
姚圣卓
刘永峰
裴普成
JIA Kunhan;YAO Shengzhuo;LIU Yongfeng;PEI Pucheng(School of Mechanical and Vehicle Engineering,Beijing Jianzhu University,Beijing 100044,China;Beijing Key Laboratory of Urban Rail Transit Vehicle Service Performance Guarantee,Beijing 100044,China;National Key Laboratory of Automotive Safety and Energy,Tsinghua University,Beijing 100084,China)
出处
《中国科技论文》
CAS
北大核心
2019年第12期1278-1282,共5页
China Sciencepaper
基金
汽车安全与节能国家重点实验室开放基金资助项目(KF1825)
国家自然科学基金资助项目(21676158)
北京建筑大学研究生创新项目(PG2019089)
关键词
质子交换膜燃料电池
水管理
相对湿度
proton exchange membrane fuel cell
water management
relative humidity