期刊文献+

模糊聚类无监督算法在图像识别中的应用 被引量:5

Application of Unsupervised Fuzzy Clustering Algorithm in Image Recognition
下载PDF
导出
摘要 本文就模糊C均值聚类算法的优势与缺陷为主要依据,提出了一种模糊聚类无监督算法,切实应用于图像分割。并提出了基于Polysegment快速分析纹理图像的方法明确聚类数目,在此基础上利用模糊聚类无监督算法获取最终分割结果。通过实验结果表明,模糊聚类无监督算法在图像分割中使用所获得的分割结果可以在很大程度避免图像纹理对分割结果的影响,有效分割目标图像与背景图像,精确度较高,而且对不同图像分割的精确性,幅值变化相对稳定,是一种非常科学有效的图像分割法,值得大力推广应用。 In this paper,based on the advantages and disadvantages of fuzzy C-means clustering algorithm,an unsupervised fuzzy clustering algorithm is proposed,which is applied to image segmentation.A method of fast texture image analysis based on Polysegment is proposed to determine the number of clusters.On the basis of this method,the final segmentation results are obtained by using unsupervised fuzzy clustering algorithm.The experimental results show that the segmentation results obtained by the fuzzy clustering unsupervised algorithm in image segmentation can greatly avoid the impact of image texture on the segmentation results,and the target image and the background image are effectively segmented with high accuracy.Moreover,the accuracy and amplitude variation of different image segmentation are relatively stable,which is a very scientific and effective image segmentation method,which is worth popularizing and applying.
作者 磨莉 李龙龙 舒蕾 MO Li;LI Long-long;SHU Lei(Shaanxi Polytechnic Institute,Xianyang 712000 China)
出处 《自动化技术与应用》 2020年第1期121-124,159,共5页 Techniques of Automation and Applications
基金 陕西省教育厅科学研究计划项目(编号18JK0062)
关键词 模糊聚类 无监督算法 图像识别 图像分割 fuzzy clustering unsupervised algorithm image recognition image segmentation
  • 相关文献

参考文献6

二级参考文献39

  • 1LI Yulin,LIU Li,LONG Teng,DONG Weili.Metamodel-based Global Optimization Using Fuzzy Clustering for Design Space Reduction[J].Chinese Journal of Mechanical Engineering,2013,26(5):928-939. 被引量:13
  • 2林开颜,吴军辉,徐立鸿.彩色图像分割方法综述[J].中国图象图形学报(A辑),2005,10(1):1-10. 被引量:322
  • 3刘丽珏,唐琎,蔡自兴.一种用于函数优化的免疫算法[J].电子技术应用,2006,32(6):22-24. 被引量:2
  • 4HEINRICH FLA, Gareia-Escudero AMI. Robust constrain- ed fuzzy clustering[J]. Information Sciences, 2013,245:38- 52. 被引量:1
  • 5KHANG ST,WEI HL, NORASHIDI MI. Novel initializa- tion scheme for Fuzzy C-Means algorithm on color image seg- mentation[J].Applied Soft Computing, 2013, 13: 1832-- 1852. 被引量:1
  • 6LUMINITA A. VESE, TONY F. Chan. A Multiphase Lev- el Set Framework for Image Segmentation Using the Mum- ford and Shah Model[J]. International Journal of Computer Vision, 2002, 50(3). 271-293. 被引量:1
  • 7WU, Z, LEAHY, R. An optimal graph theoretic approach to data clustering: theory and its application to image seg- mentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence0 1993, 15(11): 1101--1113. 被引量:1
  • 8马常霞.赵春霞.胡勇,等.结合NSCT和图像形态学的路面裂缝检测[J].工程图学学报,2008.2:142-147. 被引量:1
  • 9XU R, WUNSCH D. Survey of clustering algorithms[J]. Transactions on Neural Networks,2005, 16(3): 645-- 678. 被引量:1
  • 10BENAICHOUCHE AN, OULHADJ H. Improved spatial fuzzy c-means clustering for inaage segmentation using PSO initialization Mahalanobis distance and post-segmentation correetion[J]. Digital Signal Proeessing, 2013,23: 1390-- 1400. 被引量:1

共引文献35

同被引文献67

引证文献5

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部