摘要
This paper is concerned with a control problem of a diffusion process with the help of static mesh sensor networks in a certain region of interest and a team of networked mobile actuators carrying chemical neutralizers.The major contribution of this paper can be divided into three parts:the first is the construction of a cyber-physical system framework based on centroidal Voronoi tessellations(CVTs),the second is the convergence analysis of the actuators location,and the last is a novel proportional integral(PI)control method for actuator motion planning and neutralizing control(e.g.,spraying)of a diffusion process with a moving or static pollution source,which is more effective than a proportional(P)control method.An optimal spraying control cost function is constructed.Then,the minimization problem of the spraying amount is addressed.Moreover,a new CVT algorithm based on the novel PI control method,henceforth called PI-CVT algorithm,is introduced together with the convergence analysis of the actuators location via a PI control law.Finally,a modified simulation platform called diffusion-mobile-actuators-sensors-2-dimension-proportional integral derivative(Diff-MAS2D-PID)is illustrated.In addition,a numerical simulation example for the diffusion process is presented to verify the effectiveness of our proposed controllers.
This paper is concerned with a control problem of a diffusion process with the help of static mesh sensor networks in a certain region of interest and a team of networked mobile actuators carrying chemical neutralizers.The major contribution of this paper can be divided into three parts:the first is the construction of a cyber-physical system framework based on centroidal Voronoi tessellations (CVTs),the second is the convergence analysis of the actuators location,and the last is a novel proportional integral (PI) control method for actuator motion planning and neutralizing control (e.g.,spraying) of a diffusion process with a moving or static pollution source,which is more effective than a proportional (P) control method.An optimal spraying control cost function is constructed.Then,the minimization problem of the spraying amount is addressed.Moreover,a new CVT algorithm based on the novel PI control method,henceforth called PI-CVT algorithm,is introduced together with the convergence analysis of the actuators location via a PI control law.Finally,a modified simulation platform called diffusion-mobile-actuators-sensors-2-dimension-proportional integral derivative (Diff-MAS2D-PID) is illustrated.In addition,a numerical simulation example for the diffusion process is presented to verify the effectiveness of our proposed controllers.
基金
supported by the National Natural Science Foundation of China(61473136,61807016)
the Fundamental Research Funds for the Central Universities(JUSRP51322B)
the 111 Project(B12018)
Jiangsu Innovation Program for Graduates(KYLX15 1170)