摘要
Paternal imprinted genes(H19 and Gtl2)are pivotal for prenatal embryonic development in mice.Nongrowing oocytes and sperm-or oocyte-originated haploid embryonic stem cells(ha ESCs)carrying both H19-DMR(differentially DNA-methylated region)and IG(intergenic)-DMR deletions that partially mimic paternal imprinting of H19-Igf2 and Dlk1-Dio3 can be employed as sperm replacement to efficiently support full-term embryonic development.However,how H19-DMR and IG-DMR act together to regulate embryonic development is still largely unknown.Here,using androgenetic ha ESC(AG-ha ESC)-mediated semi-cloned(SC)technology,we showed that paternal H19-DMR and IG-DMR are not essential for pre-implantation development of SC embryos generated through injection of AG-ha ESCs into oocytes.H19-DMR plays critical roles before 12.5 days of gestation while IG-DMR is essential for late-gestation of SC embryos.Interestingly,we found that combined deletions of H19 and H19-DMR can further improve the efficiency of normal development of SC embryos at mid-gestation compared to DKO SC embryos.Transcriptome and histology analyses revealed that H19 and H19-DMR combined deletions rescue the placental defects.Furthermore,we showed that H19,H19-DMR and IG-DMR deletions(TKO)give rise to better prenatal and postnatal embryonic development of SC embryos compared to DKO.Together,our results indicate the temporal regulation of paternal imprinted loci during embryonic development.
Paternal imprinted genes(H19 and Gtl2) are pivotal for prenatal embryonic development in mice. Nongrowing oocytes and sperm-or oocyte-originated haploid embryonic stem cells(ha ESCs) carrying both H19-DMR(differentially DNA-methylated region) and IG(intergenic)-DMR deletions that partially mimic paternal imprinting of H19-Igf2 and Dlk1-Dio3 can be employed as sperm replacement to efficiently support full-term embryonic development. However, how H19-DMR and IG-DMR act together to regulate embryonic development is still largely unknown. Here, using androgenetic ha ESC(AG-ha ESC)-mediated semi-cloned(SC) technology, we showed that paternal H19-DMR and IG-DMR are not essential for pre-implantation development of SC embryos generated through injection of AG-ha ESCs into oocytes. H19-DMR plays critical roles before 12.5 days of gestation while IG-DMR is essential for late-gestation of SC embryos. Interestingly, we found that combined deletions of H19 and H19-DMR can further improve the efficiency of normal development of SC embryos at mid-gestation compared to DKO SC embryos. Transcriptome and histology analyses revealed that H19 and H19-DMR combined deletions rescue the placental defects. Furthermore, we showed that H19, H19-DMR and IG-DMR deletions(TKO) give rise to better prenatal and postnatal embryonic development of SC embryos compared to DKO. Together, our results indicate the temporal regulation of paternal imprinted loci during embryonic development.
基金
partly supported by the Genome Tagging Project,Fountain-Valley Life Sciences Fund of University of Chinese Academy of Sciences Education Foundation and grants from the Chinese Academy of Sciences(XDB19010204,OYZDJ-SSW-SMC023 and Facility-based Open Research Program)
the National Natural Science Foundation of China(31530048,81672117,31730062,31821004,and31601163)
the Ministry of Science and Technology of China(2019YFA0109900)
Shanghai Municipal Commission for Science and Technology(16JC1420500,17JC1420102,17JC1400900,and17411954900)