期刊文献+

平方根变步长l_p范数LMS算法的稀疏系统辨识 被引量:2

A Square Root Variable Step-size l_p Norm LMS Algorithm for Sparse System Identification
下载PDF
导出
摘要 针对稀疏未知系统的辨识问题,提出了一种基于lp(0<p<1)范数的稀疏约束变步长最小均方自适应滤波算法,并对其收敛性进行了理论分析。该算法将系统迭代过程中产生的预测误差的平方根引入到步长控制中,设置了平衡系数以平衡系统的收敛速度和稳态误差,使步长在迭代过程中能够得到实时的调整。同时,将lp范数作为惩罚约束项作用在代价函数中,使得自适应过程具有吸引零滤波器系数的能力。由于lp范数约束比l1范数更加接近l0范数,系统辨识结果较为精确。仿真结果表明,该算法在系统辨识中收敛速度和稳定性均优于现有的稀疏系统辨识方法。 In order to improve the performance of sparse adaptive filtering(SAF)algorithms for system identification when the system is sparse,a new square root variable step-size lp(0<p<1)norm constraint least mean square(LMS)algorithm is proposed.The square root of iteration error is adopted into the step-size length,and a parameter Vth is used to balance the convergence speed and the mean-square error of identification.The lp norm is used as penalty in the cost function of the LMS algorithm to exploit the sparsity of the system.On the basis of maintaining the excellent convergence speed and steady-state performance of the traditional LMS algorithm,this algorithm further improves the convergence speed and accuracy of system identification.The convergence analysis of the proposed algorithm is presented,and the stability condition is derived.Simulation results show that the proposed algorithm outperforms different LMS-based identification.
作者 周其玉 张爱华 曹文周 张瑞哲 ZHOU Qiyu;ZHANG Aihua;CAO Wenzhou;ZHANG Ruizhe(School of Electronic and Information Engineering,Zhongyuan University of Technology,Zhengzhou 450007,China;School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China;School of Information Engineering,Zhengzhou University,Zhengzhou 450001,China)
出处 《电讯技术》 北大核心 2020年第2期137-141,共5页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61501530) 河南省高等学校重点科研项目(16A510012) 河南省高校科技创新团队支持计划(18IRTSTHN013)
关键词 稀疏系统辨识 变步长 最小均方算法 lp范数惩罚 sparse system identification variable step-size least mean square lp norm penalty
  • 相关文献

参考文献4

二级参考文献26

  • 1Diniz P. Adaptive Filtering Algorithms and Practical Implementation [M]. Third edition, New York: Springer, 2008: 77-126. 被引量:1
  • 2Abadi M and Husoy J. Mean-square performance of the family of adaptive filters with selective partial updates J. Signal Processing, 2008, 88(8): 2008 2018. 被引量:1
  • 3Godavarti M and Hero A O. Partial update LMS algorithms [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2382-2399. 被引量:1
  • 4Duttweiler D L. Proportionate normalized least-meansquares adaptation in echo cancellers [J]. IEEE Transactions on Speech and Audio Processing, 2000, 8(5): 508-518. 被引量:1
  • 5Deng H and Dyba R A. Partial update PNLMS algorithm for network echo cancellation [C]. Proceedings of ICASSP, Taipei China, 2009: 1329-1332. 被引量:1
  • 6Gu Y, Chen Y, and Tang K. Network echo canceller with active taps stochastic localization [C]. Proceedings of ISCIT, Beijing, 2005: 556-559. 被引量:1
  • 7Gu Y, Jin J, and Mei S. lo norm constraint LMS algorithm for sparse system identification [J]. IEEE Signal Processing Letters, 2009, 16(9): 774-777. 被引量:1
  • 8Li X, Fan Y, and Peng K. A variable step-size LMS adaptive filtering algorithm [C]. Proceedings of WiCOM, Beijing, 2009 2283-2286. 被引量:1
  • 9Vega L R, Rey H, and Benesty J. A new robust variable step-size NLMS algorithm [J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1878-1893. 被引量:1
  • 10Aboulnasr T and Mayyas K. A robust variable step-size LMS-type algorithm: analysis and simulations [J]. IEEE Transactions on Signal Processing, 1997, 45(3): 631-639. 被引量:1

共引文献32

同被引文献7

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部