期刊文献+

基于掌纹静脉识别的考试门禁管理系统研究与设计 被引量:1

Research and design of examination access control system based on palmprint and vein recognition
下载PDF
导出
摘要 为确保考生身份识别的唯一性和准确性,设计了嵌入式生物特征识别的考试门禁控制管理系统。选用双COMS USB摄像头进行考生生物特征采集,运用ARM Cortex-A8嵌入式平台设计Linux驱动运用程序,通过Qt/Emmbedded图形界面实现人机友好交互。该系统同时采集考生的掌纹及皮下静脉生物特征,具有快速精准识别身份以及功能拓展性强等特点。应用于智能考核系统的门禁控制与管理,为人工智能考核系统配置高安全级别的智能化考生身份验证。该系统还可以作为门禁应用于出入控制、单位智能考勤、楼宇智能化管理的解决方案,在"物联网智能化控制与管理"领域也具有很广阔的市场前景。 In order to ensure the uniqueness and accuracy of examinee identification,an embedded biometric identification system for examination access control is designed.In the system,double COMS USB cameras are used for biometric collection,ARM Cortex-A8 embedded platform is used to design Linux driver application program,and Qt/Emmbedded graphical interface is used to realize friendly man-machine interaction.The system collects the biological characteristics of palmprint and subcutaneous vein of examinees,which has the characteristics of rapid and accurate identification and strong function expansion.It can be applied to the control and management of intelligent examination system to provide high security level intelligent examinee authentication for artificial intelligence assessment system.This system can also be widely used as a solution for access control,unit attendance and intelligent building,and has broad market prospects in the field of intelligent control and management of the Internet of Things.
作者 陈娇英 陈延明 CHEN Jiao-ying;CHEN Yan-ming(School of Electrical Engineering,Guangxi University,Nanning 530004,China;Guangxi Vocational and Technical Institute of Industry,Nanning 530001,China)
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2019年第6期1683-1689,共7页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(51567004) 人工智能实操考核系统研究(桂工业院科研2018036KY001)
关键词 掌纹静脉认证 QT/EMBEDDED LINUX 门禁管理 palmar vein recognition QT/Embedded Linux access control
  • 相关文献

参考文献5

二级参考文献62

  • 1[1]Glossary of biometrics terms [R].1998,Association for biometrics(AfB),Intemational Computer Security Association (ICSA). 被引量:1
  • 2[2]R Chellappa,et al.Humnan and machine recognition of face:a survey[J].Proc.IEEE,1995,83 (5):705-740. 被引量:1
  • 3[3]R Brunelli,T Poggio.Face recognition:features versus templates [J].IEEE Trans.PAMI,1993,15(10):1042-1052. 被引量:1
  • 4[4]D L Swets,J Weng.Using discriminant eigenfeatures for image retrieval[J].IEEE Trans.PAMI,1996,18 (8):831-836. 被引量:1
  • 5[5]B Moghaddam,et al.Probabilistic visual recognition for object recognition [J].IEEE Trans.PAMI,1997,19(7) :696-710. 被引量:1
  • 6[6]S Y Lee,et al.Recognition of humman front faces using knowledgebased feature extraction and neunofuzzy algorithm [J].Pattern Recognition,1996,29(11):1863-1876. 被引量:1
  • 7[7]S Lawtonce,et al.Face recognition:a convolutional neural-network approach [J].IEEE Trans.NN,1997,8(1):98-113. 被引量:1
  • 8[9]J Zhang,et al.Face recognition:eigenface,elastic matching,and neural nets [J].Proc.IEEE,1997,85(9):1422-1435. 被引量:1
  • 9[10]L Wiskott,et al.Face recognition by elastic bunch graph matching [J].IEEE Trans.PAMI.1997,19(6) :775-779. 被引量:1
  • 10[11]N Ratha,et al.A real-time matching system for large fingerprint database [J].IEEE Trans.PAMI,1996,18(8) :799-813. 被引量:1

共引文献180

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部