期刊文献+

高效3D密集残差网络及其在人体行为识别中的应用 被引量:4

Efficient 3D dense residual network and its application in human action recognition
下载PDF
导出
摘要 针对3D-CNN能够较好地提取视频中时空特征但对计算量和内存要求很高的问题,本文设计了高效3D卷积块替换原来计算量大的3×3×3卷积层,进而提出了一种融合3D卷积块的密集残差网络(3D-EDRNs)用于人体行为识别。高效3D卷积块由获取视频空间特征的1×3×3卷积层和获取视频时间特征的3×1×1卷积层组合而成。将高效3D卷积块组合在密集残差网络的多个位置中,不但利用了残差块易于优化和密集连接网络特征复用等优点,而且能够缩短训练时间,提高网络的时空特征提取效率和性能。在经典数据集UCF101、HMDB51和动态多视角复杂3D人体行为数据库(DMV action3D)上验证了结合3D卷积块的3D-EDRNs能够显著降低模型复杂度,有效提高网络的分类性能,同时具有计算资源需求少、参数量小和训练时间短等优点。 In view of the problem that 3D-CNN can better extract the spatio-temporal features in video, but it requires a high amount of computation and memory, this paper designs an efficient 3D convolutional block to replace the 3×3×3 convolutional layer with a high amount of computation, and then proposes a 3D-efficient dense residual networks(3D-EDRNs) integrating 3D convolutional blocks for human action recognition. The efficient 3D convolutional block is composed of 1×3×3 convolutional layers for obtaining spatial features of video and 3×1×1 convolutional layers for obtaining temporal features of video. Efficient 3D convolutional blocks are combined in multiple locations of dense residual network, which not only takes advantage of the advantages of easy optimization of residual blocks and feature reuse of dense connected network, but also can shorten the training time and improve the efficiency and performance of spatial-temporal feature extraction of the network. In the classical data set UCF101, HMDB51 and the dynamic multi-view complicated 3D database of human activity(DMV action3D), it is verified that the 3D-EDRNs combined with 3D convolutional block can significantly reduce the complexity of the model, effectively improve the classification performance of the network, and have the advantages of less computational resource demand, small number of parameters and short training time.
作者 李梁华 王永雄 Li Lianghua;Wang Yongxiong(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《光电工程》 CAS CSCD 北大核心 2020年第2期19-29,共11页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61673276,61603255,61703277)~~
关键词 机器视觉 卷积神经网络 行为识别 视频分类 machine vision convolutional neural network action recognition video classification
  • 相关文献

参考文献2

二级参考文献8

共引文献22

同被引文献31

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部