期刊文献+

柔性迭代学习控制的高精度空调智能控制策略 被引量:1

High-precision intelligent control strategy of flexible iterative learning control for air conditioning
下载PDF
导出
摘要 针对恒温恒湿空调实际运行中的随机干扰,提出了一种基于二维框架理论的迭代学习预测控制方法。首先,对恒温恒湿空调系统进行线性建模;其次,将空调系统作为间歇过程,利用二维框架理论得到二维状态空间模型;随后给出了迭代学习预测控制器的设计方法;最后通过对比不同干扰信号条件下的跟踪响应发现迭代学习预测控制不仅对周期性干扰具有较好的鲁棒性,而且在随机干扰条件下,依旧能够保持较好的跟踪性能。仿真结果验证了该方法的有效性。 Aimed at the random disturbance in actual operation of variable air volume air conditioning,an iterative learning predictive control method based on two-dimensional framework theory is proposed.Firstly,the linear model for variable air volume air conditioning system is obtained.Then the air conditioning system is regarded as a batch process and the two-dimensional state space model is obtained by the theory of two-dimensional framework.Then the design method of iterative learning predictive controller is given.Finally,the iterative learning predictive control not only has good robustness to periodic interference,but also can maintain a better tracking performance under the condition of random disturbance,which is found by comparing track response under the different disturbance signal.The effectiveness is verified by the result of simulation.
作者 周勇 ZHOU Yong(State Key Laboratory of Rail Transit Engineering Informatization(FSDI),Xi’an 710043,China)
出处 《信息技术》 2020年第2期83-88,共6页 Information Technology
关键词 变风量空调 随机干扰 二维框架理论 迭代学习预测控制 variable air volume air conditioning random disturbance two-dimensional frame theory iterative learning predictive control
  • 相关文献

参考文献8

二级参考文献59

  • 1董明晓,梅雪松,姜歌东,张明勤,王小椿.一种新型的桥式起重机位置补偿消摆控制策略[J].西安交通大学学报,2005,39(11):1250-1253. 被引量:12
  • 2Zhang Baolin,Tang Gongyou,Zheng Shi.PD-type iterative learning control for nonlinear time-delay system with external disturbance[J].Journal of Systems Engineering and Electronics,2006,17(3):600-605. 被引量:12
  • 3徐新华,王盛卫.鲁棒的多区域变风量空调系统新风控制[J].制冷与空调,2007,7(4):51-55. 被引量:7
  • 4S W Wang, et al. Adaptive neural network model based predictive control for air-fuel ratio of SI engines[ J]. Engineering Application of Artificial Intelligence, 2006,19 ( 2 ) : 189-200. 被引量:1
  • 5R Isermann, N Mueller. Nonlinear identification and adaptive control of combuxtion engines [ J ]. IFAC - Workshop on Adaptation and Learning in Control and Signal Processing, 29-31, August, Como, Italy, 2001. 被引量:1
  • 6N P Fekete, et al . Model-Based Air-Fuel Ratio Contro of a Multi-Cylinder Engine[R]. SAE Paper, No. 950846, 1995. 被引量:1
  • 7P Seungbum, Y Maru andS Myougho. Feedback error learning neural networks for air-to-fuel ratio control in SI engines[ R]. SAE Paper, 2003-01-0356, 2003. 被引量:1
  • 8C F Chang, N P Fekete and J D Powell. Engine air-fuel ratio eontrol using an eventbased observer [ R ]. SAE Paper, 930766, 1993. 被引量:1
  • 9R Isermann and N Mtieller. Design of computer controlled combustion engines[J]. Mechatronics, 2003,13(10) :1067-1089. 被引量:1
  • 10H Javaherian, et al. Adaptive critic learning techniques for automotive engine control[ C ]. Proceeding of the 2004 American Control Conference, Boston, Massachusetts, June 30-July 2, 2004. 4066- 4071. 被引量:1

共引文献39

同被引文献26

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部