期刊文献+

基于融合长短时记忆网络的风电场超短期风速预测研究 被引量:7

Very-short-term wind speed prediction of multiple wind farms based on merged long-short term memory networks
下载PDF
导出
摘要 准确的风速预测是风电功率预测的重要基础,对于电力系统的安全、稳定和经济运行有着十分重要的意义。文章通过考虑临近风电场之间的风速时空相关性,提出了一种融合长短时记忆网络的多风电场超短期风速预测模型。首先,通过堆叠的长短时记忆网络提取单个风电场的时间序列特征。之后,通过张量拼接层以及全连接层融合多个风电场的时间序列特征。最后,使用线性全连接层输出所有风电场的未来风速预测值。采用江苏省3个临近风电场两年的数据来验证文章提出的模型。与4种常用方法的对比结果表明:融合长短时记忆网络在四个季节内的超短期风速预测结果均能达到最优;通过序列特征融合的方式可以考虑多个风电场之间的时空相关性。文章提出的时间序列特征提取和空间特征融合方案直观、有效,多个风电场的风速预测精度得到明显提升。 Accurate wind speed prediction is an important basis for wind power prediction, and is of great significance to the security, stability and economic operation of power systems. In this paper, a very short-term prediction model based on merged long-short term memory network(MLSTM)is proposed by considering the spatial-temporal correlation of wind speed between adjacent wind farms. The model firstly extracts the time series features of a single wind farm through stacked long-short term memory networks, then merges the time series featured of multiple wind farms through the tensor concatenate layer and full-connection layer, and finally uses linear full-connection layer to output the predicted wind speed values of all wind farms. The model is validated by two-year data of three nearby wind farms in the south of China. Compared with four commonly used methods, the results show that the very short-term wind speed prediction results based on MLSTM can be better than the comparison methods in different seasons. The spatial and temporal correlation between multiple wind farms can be considered by the means of MLSTM to improve the accuracy of wind speed prediction.
作者 王红刚 李彬 Wang Honggang;Li Bin(Wuhan University of Technology,Wuhan 430070,China)
机构地区 武汉理工大学
出处 《可再生能源》 CAS 北大核心 2020年第1期41-46,共6页 Renewable Energy Resources
基金 国家自然科学基金项目(61673305)
关键词 风电 风速预测 长短时记忆网络 时空相关 wind power wind speed prediction long and short time memory network space-time correlation
  • 相关文献

参考文献4

二级参考文献98

  • 1康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:497
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3Lalarukh Kamal,Yasmin Zahra Jafri.Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan[J].Solar Energy.1997(1) 被引量:2
  • 4Matevosyan, Julija,S?der, Lennart.Minimization of imbalance cost trading wind power on the short-term power market. IEEE Transactions on Power Systems . 2006 被引量:3
  • 5Methaprayoon, Kittipong,Yingvivatanapong, Chitra,Lee, Wei-Jen,Liao, James R.An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty. IEEE Transactions on Industry Applications . 2007 被引量:2
  • 6Aoife M. Foley,Paul G. Leahy,Antonino Marvuglia,Eamon J. McKeogh.Current methods and advances in forecasting of wind power generation[J]. Renewable Energy . 2011 (1) 被引量:1
  • 7Lars Landberg,Simon J. Watson.Short-term prediction of local wind conditions[J]. Boundary-Layer Meteorology . 1994 (1) 被引量:1
  • 8S?er, Lennart,Hofmann, Lutz,Orths, Antje,Holttinen, Hannele,Wan, Yih-Huei,Tuohy, Aidan.Experience from wind integration in some high penetration areas. IEEE Transactions on Energy Conversion;Special Issue on Wind Power . 2007 被引量:1
  • 9Watson, S.J.,Landberg, L.,Halliday, J.A.Application of wind speed forecasting to the integration of wind energy into a large scale power system. Generation, Transmission and Distribution, IEE Proceedings- . 1994 被引量:1
  • 10Bei Chen,Liang Zhao,Jian Hong Lu.Wind Power Forecast Using RBF Network and Culture Algorithm. International Conference on Sustainable Power Generation and Supply . 2009 被引量:1

共引文献350

同被引文献78

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部