期刊文献+

Recent advances in amino acid sensing and new challenges for protein nutrition in aquaculture 被引量:1

原文传递
导出
摘要 From the conventional knowledge of protein nutrition to the molecular nutrition of amino acids, our understanding of protein/amino acid nutrition is rapidly increasing. Amino acids control cell growth and metabolism through two amino acid-sensingpathways, i.e. target of rapamycin complex 1 (TORC1) and the general control nonderepressible 2 (GCN2) signaling pathway.In the amino acid-abundant status, TORC1 dominates intracellular signaling and increases protein synthesis and cell growth.In contrast, amino acid deprivation actives GCN2 resulting in repression of general protein synthesis but facilitates the aminoacid transport and synthesis process. By integrating and coordinating nutrition and hormone signaling, TORC1 and GCN2control the switch of the catabolism and anabolism phase in most eukaryotes. Now, we appreciate that the availability ofindividual amino acids is sensed by intracellular sensors. These cutting-edge findings expand our knowledge of amino acidnutrition. Although the TORC1 and GCN2 were discovered decades ago, the study of molecular amino acid nutrition inaquaculture animals is still at its infancy. The aquaculture industry is highly dependent on the supply of fishmeal, which isthe major protein source in aquacultural animal diets. Some concerted efforts were conducted to substitute for fishmeal dueto limited supply of it. However, the concomitant issues including the unbalanced amino acid profile of alternative proteinsources limited the utilization of those proteins. Continued study of the molecular nutrition of amino acid in aquacultureanimals may be expected in the immediate future to expand our knowledge on the utilization of alternative protein sources.
出处 《Marine Life Science & Technology》 2019年第1期50-59,共10页 海洋生命科学与技术(英文)
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部