期刊文献+

基于KCF的样本更新与目标重定位方法 被引量:2

A Method of Sample Updating and Target Repositioning Based on KCF
下载PDF
导出
摘要 为了解决核相关滤波(Kernelized Correlation Filter,KCF)算法由于测量误差的累积导致目标跟踪失败的问题,提出一种样本质量评价机制,筛选样本对分类器进行更新操作。为了解决目标遮挡后重定位的问题,使用Kalman滤波算法估计目标位置,然后评价其估计结果。为了解决目标位置难以预测的问题,使用ORB特征点匹配算法完成目标的重新定位。在TB数据集中选取部分序列进行测试。实验结果表明,目标出现短时间、长时间遮挡时,改进算法在精确度和成功率上都有一定程度的提高。 In order to solve the problem that the Kernelized Correlation Filter( KCF) algorithm leads to target tracking failure due to the accumulation of measurement error,a sample quality evaluation mechanism is proposed to screen the sample to update the classifier. In order to solve the problem of repositioning after target occlusion,the Kalman filtering algorithm is used to estimate the target position,and then the estimation results are evaluated. In order to solve the problem that the target location is difficult to predict,the ORB feature point matching algorithm is used to complete the relocation of the target. A partial sequence in the TB dataset is selected for testing. Experimental results show that when the target appears in short-term and long-term occlusion,the improved algorithm improves the accuracy and success rate to a certain extent.
作者 吴世宇 李志华 王威 WU Shi-yu;LI Zhi-hua;WANG Wei(College of Energy and Electrical Engineering,Hohai University,Nanjing 211100,China)
出处 《计算机与现代化》 2020年第1期111-116,共6页 Computer and Modernization
基金 江苏省自然科学基金资助项目(BK20151500)
关键词 目标跟踪 核相关滤波 样本更新 KALMAN滤波 ORB特征点 object tracking kernelized correlation filter sample updating Kalman filter ORB feature point
  • 相关文献

参考文献3

二级参考文献36

  • 1查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19
  • 2Paragios N, Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 3(22): 266-280. 被引量:1
  • 3Bai Kejia, Liu Weiming. Improved Object Tracking with Particle Filter and Mean Shift [ C ]//Proceedings of IEEE International Conference on Automation and Logistics. Piscataway, N J: IEEE PRESS, 2007:431-435. 被引量:1
  • 4Robert T. Collins. Mean-shift blob tracking through scale space [ J]. IEEE Computer Society Conference on Computer Vis!on and Pattern Recognition, 2003, 2: 234-240. 被引量:1
  • 5Kailath T. The divergence and Bhattacharyya distance measures in signal selection [ J ]. IEEE Transactions on Communication Technologys, 1967,1 (15) : 52-60. 被引量:1
  • 6Van Willigenburg L G, De Koning W L. Temporal linear system structure[ J ]. IEEE Transactions on Automatic Control, 2008, 5(53): 1318-1323. 被引量:1
  • 7Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian bayesian state estimation [ J ]. lEE Proceedings on Radar and Signal Processing, 1993, 140 (2) : 107-113. 被引量:1
  • 8Merwe R, Doucet A, Freitas Nando de, et al. The unscented particle filter [ R ]. Cambridge , UK : Cambridge University, Engineering Department, 2000. 被引量:1
  • 9Shen C, Anton Van den Hengel, Dick A. Probabilistic multiple cue integration for particle filter based tracking [ C ]//Proceedings of the Vllth Digital hnage Computing Techniques and Applications. Sydney, Australia: Cslro Publishing, 2003 : 399- 408. 被引量:1
  • 10Doucet A, Godsill S J, Andrieu C. On sequential simulation- based methods for Bayesian filtering [J]. Statistics and Computing, 2000,10 ( 3 ) : 197-208. 被引量:1

共引文献37

同被引文献28

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部