期刊文献+

事件知识图谱构建技术与应用综述 被引量:26

Reviews on Event Knowledge Graph Construction Techniques and Application
下载PDF
导出
摘要 知识图谱以图结构表示丰富灵活的语义,描述客观世界的事物及其关系,在应用领域得到了广泛的关注。事件知识图谱聚焦动态事件及其间的顺承、时序和因果关系,并以结构化的图形式表示,对海量数据更高效地管理。尤其是对动态事件信息和事件逻辑关系的挖掘,对认识客观世界发展规律,助力领域多种智能应用有着重要的意义。本文系统阐述事件知识图谱的构建技术,包括事件知识表示、事件知识抽取、事件关系抽取,并介绍事件知识图谱在领域的典型应用,最后介绍现阶段的挑战与研究展望。 Given its rich and flexible semantics by the graph structure,knowledge graph which describes the things in the objective world and their relationships has received extensive attentions in many fields. In objective world,event knowledge graph focuses on various dynamic events,entities and their relationships in terms of structured graph for more efficient management of massive data. In particular,the mining of dynamic event information and event logic in the application field are of great significance for understanding the laws of world development and assisting various intelligent applications. The construction techniques and typical applications of event knowledge graph are reviewed in this article,including event knowledge representation,event knowledge extraction,and event relation extraction. The challenges and research perspectives are also discussed.
作者 项威 XIANG Wei(School of Electronic Information and Communications,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《计算机与现代化》 2020年第1期10-16,共7页 Computer and Modernization
基金 国家自然科学基金资助项目(61771209)
关键词 事件 知识图谱 构建技术 人工智能 深度学习 event knowledge graph construction technology artificial intelligence deep learning
  • 相关文献

参考文献6

二级参考文献38

  • 1Ahn D. The Stages of Event Extraction//Proc of the COLING-ACL Workshop on Annotating and Reasoning about Time and Events. Sydney, Australia, 2006 : 1 - 8. 被引量:1
  • 2Surdeanu M, Harabagiu S, Williams J, et al. Using Predicate-Argu- ment Structures for Information Extraction//Proc of the 41st Annual Meeting on Association for Computational Linguistics. Sapporo, Japan, 2003:8-15. 被引量:1
  • 3Girju R. Automatic Detection of Causal Relations for Question Answering// Proc of the 41 st ACL Workshop on Multilingual Summarization and Question Answering. Sapporo, Japan, 2003:76 -83. 被引量:1
  • 4Filatova E, Hatzivassiloglou V. Event-Based Extractive Summarization // Proc of ACL Workshop on Summarization. Barcelona, Soain, 2004:104-111. 被引量:1
  • 5Pechsiri C, Kawtrakul A. Mining Causality from Texts for Question Answering System. IEICE Trans on Information and Systems, 2007, 90(10) : 1523 -1533. 被引量:1
  • 6Khoo C, Kornfilt J, Oddy R, et al. Automatic Extraction of Cause- Effect Information from Newspaper Text without Knowledge-Based Inferencing. Literary and Linguistic Computing, 1998, 13(4) : 177- 186. 被引量:1
  • 7Joskowicz L, Ksiezyck T, Grishman R. Deep Domain Models for Discourse Analysis//Proc of the Annual AI Systems in Government Conference. Washington D C, USA, 1989:195 -200. 被引量:1
  • 8Kaplan R, Berry-Rogghe G. Knowledge-Based Acquisition of Causal Relationships in Text. Knowledge Acquisition, 1991,3 (3) : 317 - 337. 被引量:1
  • 9Garcia D. COATIS, an NLP System to Locate Expressions of Actions Connected by Causality Links // Proc of the 10th European Workshop on Knowledge Acquisition, Modeling and Management. Catalonia, Spain, 1997 : 347 - 352. 被引量:1
  • 10Inui T, Inui K, Matsumoto Y. What Kinds and Amounts of Causal Knowledge Can Be Acquired from Text by Using Connective Markers as Clues? Lecture Notes in Artificial Intelligence, 2003 : 280 - 193. 被引量:1

共引文献112

同被引文献242

引证文献26

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部