摘要
为了利用高光谱遥感有效地监测农作物叶片中的重金属含量变化,在化学分析和农作物叶片对铜元素含量增加的敏感性基础上,利用光谱植被指数定量监测作物叶片铜元素含量变化,为大面积、快速、准确、无损地监测农田水稻叶片重金属含量变化提供技术支持。以张家港市为研究区域,实地采集水稻叶片样品21个。采用便携式高光谱地物波谱仪,获取灌浆期水稻植株叶片的光谱反射率并提取光谱指数,室内测定叶片重金属铜含量,并分析水稻叶片重金属铜含量与不同类型光谱指数的相关性。结果表明,高光谱数据对叶片铜含量变化的敏感性较好,其中,红边位置(REP)、绿波段归一化差异指数(GNDVI)、比值植被指数(RVI)、Vogelmann红边指数(VOGI)和地面叶绿素指数(MTCI)可分别作为估测叶片铜含量的敏感光谱指数,其乘幂和指数回归模型能够较好地反演水稻叶片铜含量;叶片铜含量的敏感光谱波段参数在原始光谱中主要集中于420~670nm范围内,最小负相关系数的波长是646、647、648nm;而一阶微分和二阶微分光谱中在蓝边、黄边、红边和近红外区域均有分布,最大正相关系数的波长分别是660、715nm;水稻叶片铜含量估测的最佳模型是基于二阶微分敏感光谱参数构建的偏最小二乘回归模型,该模型预测2的铜含量值与实测值的拟合度较好(R=0.56)。研究结果证明可以利用高光谱生物遥感技术有效地监测农田水稻叶片中重金属含量的变化,判断作物中重金属浓度是否超标,为高光谱遥感立体、快速和大面积地监测农田作物铜含量的变化提供参考,也为评价水稻的食用安全提供科学方法。
出处
《江苏农业科学》
2019年第23期324-330,共7页
Jiangsu Agricultural Sciences
基金
国家重点研发计划(编号:2018YFD0800201)
江苏省高校哲学社会科学研究项目(编号:2016SJD630126)