摘要
目前试图结合广义相对论与量子力学的量子引力论强调了最小普朗克距离。这种离散化的要求是否意味着以无穷小距离、连续和微积分为基础的近代数学的终结?如果从离散与连续的角度重新分析已有物理学统一理论所需要的数学理论,就会发现,它们都不同程度地处理了离散、连续以及离散与连续之间的统一问题;而当前的量子引力论仍旧需要处理离散与连续之间的统一问题,并且,其相应的量子几何学有可能全面实现离散与连续之间的统一。
The current several constructing methods of quantum gravity that try to unify general relativity and quantum mechanics all emphasize the minimum Planck distance.Does this requirement of discretization mean the end of mathematics based on infinitesimal distance,continuous and calculus?If we reanalyze the mathematics needed for the unified theory of physics from the perspective of discreteness and continuation,we will find that they have dealt with discreteness,continuation,and unification of discreteness and continuation in some degree.The current quantum gravity still need to deal with the unification problem between discreteness and continuation,and the corresponding quantum geometry is likely to fully realize the unification of discreteness and continuation.
作者
高策
冯晓华
GAO Ce;FENG Xiao-hua(Institute for History of Science and Technology,Institute for Regional Science and Technology Policy,Shanxi University,Taiyuan 030006,China)
出处
《自然辩证法研究》
CSSCI
北大核心
2019年第12期17-22,共6页
Studies in Dialectics of Nature
基金
国家社会科学规划基金“当代量子论与新科学哲学的兴起”(16ZDA113)
关键词
离散
连续
流形
希尔伯特空间
量子几何学
discreteness
continuation
manifold
Hilbert space
quantum geometry