期刊文献+

商品评论情感倾向性分析 被引量:19

Sentiment analysis of commodity reviews
下载PDF
导出
摘要 针对粗粒度的商品评论情感分析不能详尽地提供用户喜好问题,提出一种基于支持向量机(SVM)结合点互信息(PMI)的细粒度商品评论情感分析方法。首先,使用卡方检验方法进行文本特征选择和降维;接着,对朴素贝叶斯、决策树、支持向量机(SVM)、K最邻近算法(K NN)四种常用情感分类方法进行比较,支持向量机(SVM)的召回率和精确率最高,均达到94.5%,所以使用支持向量机(SVM)对商品评论进行粗粒度的情感分析;然后,根据人工经验总结典型的商品属性,使用点互信息(PMI)方法对商品属性扩充;最后针,对扩充后的商品属性,在以上粗粒度的商品评论情感分析基础上,进行细粒度的情感分析及统计。细粒度的商品评论情感分析,可使厂家看到用户对产品属性的喜好,以及在产品设计、销售及服务中需要改进的方面。 Aiming at the problem that coarse-grained commodity review sentiment analysis cannot provide the user preference in detail,a method of fine-grained commodity comment sentiment analysis based on Support Vector Machine(SVM)combined with Point Mutual Information(PMI)was proposed.Firstly,chi-square test method was used for text feature selection and dimensionality reduction.Then,four common sentiment classification methods,such as Naive Bayes,decision tree,Support Vector Machine(SVM)and K Nearest Neighbors(K NN)algorithm,were compared.SVM had the highest recall rate and accuracy rate of 94.5%,therefore,it was used to conduct coarse-grained sentiment analysis of commodity reviews.Then,based on manual experience to summarize typical commodity attributes,PMI was used to expand the product attributes.Finally,based on the expanded product attributes and the above-mentioned coarse-grained product review sentiment analysis,fine-grained sentiment analysis and statistics was performed.Fine-grained product reviews sentiment analysis allows manufacturers to observe user preferences for product attributes and areas for improvement in product design,sales,and service.
作者 李明 胡吉霞 侯琳娜 严峻 LI Ming;HU Jixia;HOU Linna;YAN Jun(School of Economics and Management,Xi’an University of Technology,Xi’an Shaanxi 710054,China)
出处 《计算机应用》 CSCD 北大核心 2019年第S02期15-19,共5页 journal of Computer Applications
关键词 情感分析 特征选择 文本分类 机器学习 商品属性 sentiment analysis feature selection text classification machine learning commodity attribute
  • 相关文献

参考文献2

二级参考文献12

  • 1Vasileios Hatzivassiloglou, Kathleen R. McKeown. Predicting the semantic orientation of adjectives[A]. In: Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conference of the European Chapter of the ACL[C], 1997:174- 181. 被引量:1
  • 2Turney, Peter, Littman Michael. Measuring praise and criticism: Inference of semantic orientation from association[J]. ACM Transactions on Information Systems, 2003, 21(4): 315- 346. 被引量:1
  • 3Turney ,Peter. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews[A]. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics[C]. 2002:417 -424. 被引量:1
  • 4Bo Pang,Lillian Lee, Shivanathan Vaithyanathan. Thumbs up? Sentiment classification using machine learning techniques[A]. In Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing[C]. 2002:79 - 86. 被引量:1
  • 5Bo Pang,Lillian Lee. Seeing Stars: Exploiting Class Relationships for Sentiment Categorizalion with respect to Rating Seales[A]. ACL2005, 115-124. 被引量:1
  • 6K Dave, S lawrence, DM Pennock. , Mining the peanut gallery: opinion extraction and semantic classification of product reviews[A]. WWW2003, 519-28. 被引量:1
  • 7Bing Liu, Minqing Hu, Junsheng Cheng. Opinion observer: analyzing and comparing opinions on the Web[A].WWW2005, 324- 351. 被引量:1
  • 8HowNet[R]. HowNet's Home Page. http://www. keenage.com. 被引量:1
  • 9刘群 李素建.基于《知网》的词汇语义相似度的计算[A]..第三届汉语词汇语义学研讨会[C].台北,2002.. 被引量:14
  • 10冯时,付永陈,阳锋,王大玲,张一飞.基于依存句法的博文情感倾向分析研究[J].计算机研究与发展,2012,49(11):2395-2406. 被引量:34

共引文献411

同被引文献176

引证文献19

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部