摘要
In order to evaluate the performance of semi-active cab’s hydraulic mounts(SHM)of the off-road vibratory roller with the optimal fuzzy-PID(proportional integral derivative)control,a nonlinear dynamic model of the vehicle interacting with off-road terrains is established based on Matlab/Simulink software.The weighted root-mean-square(RMS)acceleration responses of the driver’s seat heave and the cab’s pitch angle are chosen as objective functions.The SHM is then optimized and analyzed via the optimal fuzzy-PID control under different operation conditions.The simulations results show that the driver’s ride comfort and the cab shaking are greatly affected by the off-road terrains under various operating conditions of the vehicle,especially at the speed from 8 to 12 km/h on a very poor terrain surface of Grenville soil ground under the vehicle travelling.With SHM using the optimal fuzzy-PID control,the driver’s ride comfort and the cab shaking are clearly improved under various operation conditions of the vehicle,particularly at the speed from 6 to 7 km/h of the vehicle traveling.
为了分析振动压路机驾驶室液阻隔振的优化fuzzy-PID控制的性能,基于Matlab/Simulink软件建立了振动压路机与变形土壤地面相互作用的非线性动力学模型.以驾驶员座椅垂向和驾驶室的俯仰角的加权加速度均方根RMS值为目标函数.对不同工作工况下半主动液阻隔振的优化fuzzy-PID控制进行了仿真与性能分析.研究结果表明,不同土壤地面变形对驾驶员乘坐舒适性与驾驶室俯仰角均有明显影响.特别地,车辆以8~12 km/h范围内的速度行驶在变形非常差的Grenville土壤上.此外,在不同工况下对振动压路机驾驶室半主动液阻隔振的优化fuzzy-PID控制,驾驶员乘坐舒适性与驾驶室俯仰角均有明显提高,特别是车辆以6~7 km/h范围内的速度行驶.
基金
The National Key Research and Development Plan(No.2019YFB2006402)