期刊文献+

Analysis and control of inter-electrode gap during leveling process in counter-rotating electrochemical machining 被引量:3

Analysis and control of inter-electrode gap during leveling process in counter-rotating electrochemical machining
原文传递
导出
摘要 The inter-electrode gap(IEG) is an essential parameter for the anode shaping process in electrochemical machining(ECM) and directly affects the machining accuracy. In this paper, the IEG during the leveling process of an oval anode workpiece in counter-rotating ECM(CRECM)is investigated. The variation of the minimum IEG is analyzed theoretically, and the results indicate that rather than reaching equilibrium, the minimum IEG in CRECM expands constantly when a constant feed speed is used for the cathode tool. This IEG expansion leads to a poor localization effect and has an adverse influence on the roundness of the machined workpiece. To maintain a small constant IEG in CRECM, a variable feed speed is used for the cathode based on a fitted equation. The theoretical results show that the minimum IEG can be controlled at a small value by using an accelerated feed speed. Experiments have been conducted using a specific experimental apparatus in which the cathode tool is designed as a combined structure of two sectors and a thin sheet. By detecting the machining currents flowing through the minimum IEG, how the latter varies is obtained indirectly. The results indicate that using an accelerated feed speed is effective for controlling the IEG, thereby improving the roundness of the machined workpiece. The inter-electrode gap(IEG) is an essential parameter for the anode shaping process in electrochemical machining(ECM) and directly affects the machining accuracy. In this paper, the IEG during the leveling process of an oval anode workpiece in counter-rotating ECM(CRECM)is investigated. The variation of the minimum IEG is analyzed theoretically, and the results indicate that rather than reaching equilibrium, the minimum IEG in CRECM expands constantly when a constant feed speed is used for the cathode tool. This IEG expansion leads to a poor localization effect and has an adverse influence on the roundness of the machined workpiece. To maintain a small constant IEG in CRECM, a variable feed speed is used for the cathode based on a fitted equation. The theoretical results show that the minimum IEG can be controlled at a small value by using an accelerated feed speed. Experiments have been conducted using a specific experimental apparatus in which the cathode tool is designed as a combined structure of two sectors and a thin sheet. By detecting the machining currents flowing through the minimum IEG, how the latter varies is obtained indirectly. The results indicate that using an accelerated feed speed is effective for controlling the IEG, thereby improving the roundness of the machined workpiece.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第11期2557-2565,共9页 中国航空学报(英文版)
基金 supported by the National Natural Science Foundation of China (51535006, 51805259) Natural Science Foundation of Jiangsu Province of China (BK20180431) Fundamental Research Funds for the Central Universities of China (3082018NP2018406) Young Elite Scientists Sponsorship Program by CAST of China Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology of China
关键词 COUNTER-ROTATING Electrochemical machining Inter-electrode gap Leveling process Variable feed speed Counter-rotating Electrochemical machining Inter-electrode gap Leveling process Variable feed speed
  • 相关文献

参考文献3

二级参考文献6

共引文献15

同被引文献17

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部