期刊文献+

基于PNCC与基频的鲁棒电话语音性别检测方案 被引量:1

A Robust Gender Recognition Scheme for Telephone Speech Based on PNCC and Fundamental Frequency
下载PDF
导出
摘要 针对电话语音性别检测存在识别准确率较低的问题,提出了一种有效的电话语音性别检测方案(CNN+SVM);首先,采用卷积神经网络(Convolutional Neural Network,CNN)提取幂律归一化倒谱系数(Power-Normalized Cepstral Coefficient,PNCC)的有效信息;然后,结合优化后的基频特征,选用支持向量机(Support Vector Machine,SVM)实现性别分类.该方案有效融合了男、女发音和听觉感知特性上的差异,同时利用了CNN特征提取能力以及SVM鲁棒分类能力.仿真结果表明:CNN+SVM方案针对实际场景电话语音数据集的性别识别准确率优于传统识别方法. In view of the low recognition accuracy of telephone voice gender detection,an effective gender detection scheme for telephone speech is proposed.Firstly,the Convolutional Neural Network(CNN)is used to extract the effective information of Power-Normalized Cepstral Coefficient(PNCC),and then Support Vector Machine(SVM)is selected to realize gender classification based on the optimized fundamental frequency features.The proposed scheme can effectively study the differences of male and female s pronunciation and auditory perception characteristics,and can benefit from the ability of CNN feature extraction and SVM robust classification.Experimental results show that the proposed scheme outperforms the traditional methods in gender recognition accuracy for the telephone speech data set in practical scenarios.
作者 钟顺明 况鹏 庄豪爽 冯韩德 王剑莹 张涵 ZHONG Shunming;KUANG Peng;ZHUANG Haoshuang;FENG Hande;WANG Jianying;ZHANG Han(Guangdong Provincial R&D Center of Cardiovascular Individual Medicine&Big Data∥School of Physics and Telecommunication Engineering,South China Normal University,Guangzhou 510006,China;Shenzhen Egos Science Technology co.,LTD.,Shenzhen 518000,China)
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2019年第6期118-122,共5页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61471176) 教育部蓝火计划(惠州)产学研项目(CXZJHZ201705) 广东省特支计划项目(2016TQ03X100) 广东省自然科学基金项目(2018A030313990) 广东省科技计划项目(2017A010101015,2017B030308009,2017KZ010101) 蓝盾产学研基金项目(LD20170204,LD20170207)
关键词 幂律归一化倒谱系数 卷积神经网络 性别检测 支持向量机 基频 power-normalized cepstral coefficients convolutional neural network gender detection support vector machine pitch
  • 相关文献

参考文献1

共引文献7

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部