期刊文献+

基于卷积神经网络的调制样式识别研究 被引量:6

Research on modulation pattern recognition based on convolutional neural network
下载PDF
导出
摘要 自动调制样式识别分类是解调前的重要步骤,在频谱管理、认知无线电、智能调制解调器、监视和干扰识别等许多应用中发挥着重要作用。深度学习具有强大的分类能力,基于深度学习中的卷积神经网络,将映射成星座图的具有不同调制样式的通信信号馈送进神经网络,从而达到通信信号调试样式识别分类的目的。基于实验目的,提出一种改进的卷积神经网络结构可实现对七种不同的调制样式的分类,在信噪比≥5dB时,识别率可达97.99%,信噪比≥9dB时,识别率可达100%。 Automatic modulation pattern recognition classification is an important step before demodulation and plays an important role in many applications such as spectrum management,cognitive radio,smart modem,surveillance and interference recognition.Deep learning has powerful classification ability.Based on the convolutional neural network in deep learning,the communication signals with different modulation patterns mapped into constellations are fed into the neural network,so as to achieve the purpose of communication signal debugging pattern recognition and classification.Based on the experimental purpose,an improved convolutional neural network structure can realize the classification of seven different modulation patterns.The signal-to-noise ratio is≥5db,the recognition rate can reach 97.99%,the signal-to-noise ratio is≥9db,the recognition rate can reach 100%.
作者 陈昌美 李艳斌 CHEN Chang-mei;LI Yan-bin(The 54th Research Institute of CETC,Shijiazhuang 050081,China)
出处 《信息技术》 2020年第1期101-106,共6页 Information Technology
关键词 自动调制分类 星座图 深度学习 卷积神经网络 automatic modulation classification constellation deep learning conv-olutional neural network(CNN)
  • 相关文献

参考文献5

二级参考文献41

  • 1包锡锐,吴瑛,周欣.基于高阶累积量的数字调制信号识别算法[J].信息工程大学学报,2007,8(4):463-467. 被引量:23
  • 2SWAMI A and SADLER B M. Hierarchical digital modulation classification using cumulants[J]. IEEE Transactions on Communications, 2000, 48(3): 416-429. doi: 10.1109/26.837045. 被引量:1
  • 3SHAKRA Mahmoud M, SHAHEEN Ehab M, BAKR Hossam Abou, et al. C3. Automatic digital modulation recognition of satellite communication signals[C]. 32nd National Satellite Communication Signals, Giza, 2015: 118-126. doi: 10.1109/ NRSC.2015.7117822. 被引量:1
  • 4WANG Lanxun, REN Yujing, and ZHANG Ruihua. Algorithm of digital modulation recognition based on support vector machines[C]. International Conference on Machine Learning and Cybernetics, Baoding, 2009: 980-983. doi: 10.1109/ICMLC.2009.5212366. 被引量:1
  • 5LIU Mingzhu, ZHAO Yue, Shi Lin, et al. Research on recognition algorithm of digital modulation by higher order cumulants[C]. Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Harbin, 2014: 686-690. doi: 10.1109/~MCCC.2014.146. 被引量:1
  • 6FEHSKE A, GAEDDERT J, and REED J. A new approach to signal classification using spectral correlation and neural networks[C]. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, MD, 2005: 144-150. doi: 10.1109/DYSPAN. 2005. 1542629. 被引量:1
  • 7HAN Yu, WEI Guohua, SONG Chunyun, et al. Hierarchical digital modulation recognition based on higher-order cumulants[C]. Second International Conference on Instrumentation, Measurement, Computer, Communication and Control (IMCCC), Harbin, 2012: 1645-1648. doi: 10.1109 /IMCCC.2012.398. 被引量:1
  • 8VISAN D A, JURIAN M, LITA I, et al. Modeling and simulation of an recognition system for digital modulated signals[C]. 32nd International Spring Seminar on Electronics Technology(ISSE), Brno, 2009: 1-5. doi: 10.1109/ISSE.2009. 5206992. 被引量:1
  • 9YAJNANARAYANA V and AHMED I Z. Novel method for blind constellation detection using template based classifier for quadrature digital modulation schemes[C]. 10th International Conference on Electronic Measurement & Instruments (ICEMI), Chengdu, 2011: 1-4. doi: 10.1109/ ICEMI.2011.6037934. 被引量:1
  • 10RAMKUMAR B. Automatic modulation classification for cognitive radios using cyclic feature detection[J]. IEEE Circuits and Systems Magazine, 2009, 9(2): 27-45. doi: 10.1109/MCAS.2008.931739. 被引量:1

共引文献115

同被引文献64

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部