期刊文献+

基于CNNC的卷积神经网络图像的压缩方法 被引量:2

Image compression method based on convolutional neural network compression
下载PDF
导出
摘要 图像压缩是提高图像存储效率以及实现高速高效传输的前提。根据神经网络的基本结构和算法,设计并搭建了基于卷积神经网络的CNNC(convolutional neural network compression,CNNC)图像压缩模型。该模型通过卷积层和池化层构成自编码器,反卷积层和卷积层构成自解码器,实现了图像编码压缩和解码重建的功能,并通过Set12数据集验证了CNNC图像压缩模型。实验结果表明,当压缩比较低时,JPEG压缩方法与CNNC压缩方法无显著差异;当压缩比较高时,CNNC压缩方法有明显的优势,在压缩比高达128时,CNNC压缩方法重建结果仍然很好。Set12数据集实验验证了CNNC压缩模型的有效性。 Image compression is the premise to improve the efficiency of image storage and realize high-speed and efficient transmission.According to the basic structure and algorithm of neural network,a convolution neural network compression(CNNC)model was designed and built in this paper.The self-encoder was composed of convolution layer and pooling layer,deconvolution layer and convolution layer constituted self-decoder.The function of image coding compression and decoding reconstruction was realized.The CNNC image compression model was validated by Set12 data set.The experimental results showed that when the compression ratio was low,there is no significant difference between JPEG compression method and CNNC compression method;when the compression ratio was high,CNNC compression method had obvious advantages,and when the compression ratio was up to 128,the reconstruction result of CNNC compression method was still very good.Set12 data set experiment verifies the validity of CNNC compression model.
作者 崔建良 李建飞 陈春晓 姜睿林 CUI Jianliang;LI Jianfei;CHEN Chunxiao;JIANG Ruilin(Department of Biomedical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《生物医学工程研究》 2019年第4期415-419,共5页 Journal Of Biomedical Engineering Research
关键词 图像压缩 自编码器 卷积神经网络 深度学习 图像重建 Image compression Self-encoder Convolutional neural network Deep learning Image re-construction
  • 相关文献

参考文献4

二级参考文献22

  • 1李宏贵,李兴国,罗正发.基于四叉树的灰度图像压缩方法[J].系统工程与电子技术,2004,26(7):981-984. 被引量:5
  • 2ISO CD10918-1, 1991. Digital Compression and Coding of Continuous Tone Still Pictures[S]. 被引量:1
  • 3Ahmed N, Natarajan T, Rao K R. On image processing and a discrete cosine transform[J]. IEEE Transactions on Computers, 1974, C-23 ( 1 ) : 90-93. 被引量:1
  • 4Servais M,de Jager G. Video compression using the three dimensional discrete cosine transform (3D- DCT) [C] // Proceedings of the 1997 South African Symposium on Communications and Signal Processing, Grahamstown, 1997 : 27-32. 被引量:1
  • 5Chan R K W, Lee M C. Quantization of 3D-DCT coefficients and scan order[C] // Proceedings of International Conference on Virtual Systems and Mul- timedia, Geneva, 1997 ..188-196. 被引量:1
  • 6Bozinovic N, Konrad J. Motion analysis in 3D DCT domain and its application to video coding[J]. Signal Processing: Image Communication, 2005, 20 ( 6 ) : 510-528. 被引量:1
  • 7Sang Ai-jun, Chen Mian-shu, Chen He-xin, et al Multi-dimensional vector matrix theory and its appli cation in color image coding[J]. The Imaging Sci ence Journal,2010,58(3) : 171-176. 被引量:1
  • 8Jr O'Neal J B. Predictive quantizing systems (differential pulse code modulation) for the transmission of television signals[J]. Bell System. Tech, 1966,45: 689-721. 被引量:1
  • 9Wallace G K. The JPEG still picture compression standard[J]. IEEE Transactions on Consumer Electronics,1992,38(1) ..18 34. 被引量:1
  • 10Srnoot S R, Rowe I. A. Laplacian model for AC DCT terms in image and video coding[C]//Proceed- ings of the lath International Workshop on Network and Operating Systems Support for Digital Audio and Video Table of Contents, Monterey CA, 1996. 被引量:1

共引文献17

同被引文献9

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部