期刊文献+

有机朗肯循环系统工质设计与系统参数的同步优化 被引量:3

A Simultaneous Optimization of Working Fluid Design and System Parameters in Organic Rankine Cycle
下载PDF
导出
摘要 工质是有机朗肯循环(organic Rankine cycle, ORC)中能量转换的载体,其与冷、热源之间的匹配直接影响ORC系统性能。现有工质提升ORC系统性能有限,新型工质的设计对提升ORC性能非常重要。提出了基于计算机辅助分子设计(computer-aided molecular design, CAMD)的工质设计与和ORC系统同步优化的建模和求解方法,对传统CAMD模型进行了改进。建立了以ORC系统输出净功最大为优化目标的混合整数非线性数学规划(mixed integer non-line programming, MINLP)模型,提出了求解策略。基于9个基本元素选择37个基团,应用于建立的同步优化模型,获得了热源范围353.15~463.15 K和冷源范围293.15~298.15 K工况下的最优工质,并与现有工质进行了对比验证。对比结果表明,新型工质的ORC净功比现有工质ORC净功增加12.46%。对在计算ORC循环性能中涉及的工质物性,如临界温度、临界压力、沸点温度、比热容、密度和相对分子质量等进行了敏感性分析。 The working fluid is the carrier of energy conversion in the organic Rankine cycle(ORC), and its matching with the cold and heat sources directly affects the performance of the ORC system. While the existing working fluid provides a limited improvement for the performance of the ORC system, the design of the novel working fluid is very important for improving the performance of the ORC. The modeling and solving method based on computer-aided molecular design(CAMD) for working fluid design and ORC system is simultaneously optimized, and the traditional CAMD model is improved. A mixed integer nonlinear mathematical programming(MINLP) model with the maximum output net power of ORC system as the optimization target is established, and the solving strategy is proposed. Based on 9 basic elements, 37 groups are selected and applied to the established simultaneous optimization model. The optimal working fluids under the conditions of heat source range of353.15~463.15 K and cold source range of 293.15~298.15 K are obtained and compared with existing working fluids. The comparisons of net power by ORC show that the novel working fluid is 12.46% higher than the existing working fluids. A sensitivity analysis is performed on the thermodynamic properties such as critical temperature,critical pressure, boiling point temperature, specific heat capacity, density and relative molecular mass involved in calculating the ORC cycle performance.
作者 王羽鹏 罗向龙 梁俊伟 陈健勇 杨智 陈颖 Wang Yu-peng;Luo Xiang-long;Liang Jun-wei;Chen Jian-yong;Yang Zhi;Chen Ying(School of Materials and Energy,Guangdong University of Technology,Guangzhou 510006,China)
出处 《广东工业大学学报》 CAS 2020年第1期69-80,共12页 Journal of Guangdong University of Technology
基金 国家自然科学基金资助项目(51476037) 广东省应用型科技研发专项资金项目(2016B020243010)
关键词 基团贡献法 计算机辅助分子设计 有机朗肯循环 算法 优化 工质筛选 group contribution method computer-aided molecular design organic Rankin cycle algorithms optimization working fluid selection
  • 相关文献

参考文献2

二级参考文献22

  • 1Hung T C. Waste heat recovery of organic Rankine cycle using dry fluids [J]. Energy Conversion and Management, 2001, 42(5): 539-553. 被引量:1
  • 2Volez F, Segovia J J, Martin M C, Antolin G, Chejne F, Quijano A. A technical economical and market review of organic Rankinecycles for the conversion of low-grade heat for power generation [J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 4175-4189. 被引量:1
  • 3Sprouse Ⅲ C, Depcik C. Review of organic Rankine cycles for internal combustion engine exhaust waste heat recovery [J]. Applied Thermal Engineering, 2013, 51 ( 1 ): 711-722. 被引量:1
  • 4Tchanche B F, Lambrinos G, Frangoudakis A, Papadakis G. Low-grade heat conversion into power using organic Rankine cycles-a review of various applications [J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3963-3979. 被引量:1
  • 5Wu S Y, Yi T T, Xiao L. A review on performance indicator of organic Rankine cycle system for waste heat recovery// the 26th International Conference on Efficiency, Cost, Optimization, and Environmental Impact of Energy Systems (ECOS) [C]. Guilin, China, 2013. 被引量:1
  • 6Aljundi I H. Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle [J]. Renewable Energy, 2011, 36(4): 1196-1202. 被引量:1
  • 7Tian H, Shu G Q, Wei H Q, Liang X Y, Liu L N. Fluids and parameters optimization for the organic Rankine cycles (ORCs) used in exhaust heat recovery of internal combustion engine (ICE) [J]. Energy, 2012, 47:125-136. 被引量:1
  • 8Wang J F, Yan Z Q, Wang M, Li M Q, Dai Y P. Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm [J]. Energy Conversion and Management, 2013,71:146-158. 被引量:1
  • 9YangBao’an(杨保安),ZhangKejing(张科静).Multi-objectiveDecision Analysis Theory, Methods and Application Research [M]. Shanghai: Donghua University Press, 2008:5. 被引量:1
  • 10Zhou G Y, Wu E, Tu S T. Optimum selection of compact heat exchangers using non-structural fuzzy decision method [J]. Applied Energy, 2014, 113:1801-1809. 被引量:1

共引文献19

同被引文献19

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部