摘要
随着电力行业的迅速发展,窃电手段呈现出更复杂隐蔽的特点,给反窃电带来了很大考验.基于此,提出一种基于网络特征与用户行为分析的联合窃电检测方法.一方面,从网络特征分析角度出发,根据当前的电力网络测量数据,基于标准化残差搜索法识别与估计异常参数,准确定位疑似窃电用户所在支路,实现横向窃电检测;另一方面,从用户行为分析角度出发,利用用户的历史用电数据,结合粒子群算法(particle swarm optimization,PSO)和支持向量机(support vector machine,SVM)算法,提高窃电检测分析精度,实现纵向窃电检测.仿真结果表明,利用该联合窃电检测模型能够准确确定窃电异常支路并定位该支路上的窃电用户,有效筛选出电力网络的窃电嫌疑用户.
With the rapid development of the electric power industry,the means of electricity theft present more complex and hidden characteristics,which bring great test to the anti-electricity theft.This paper proposes a joint power based on the characteristics of network and user behavior analysis method;on the one hand,from the perspective of network characteristic analysis,based on the current electric power network measurement data and the standardized residual abnormal search method to identify and estimate parameters,accurate positioning of suspected power users in the branch,to realize transverse detection;on the other hand,from the perspective of user behavior analysis,the historical power consumption data of users is utilized;and particle swarm optimization(PSO)algorithm and support vector machine(SVM)algorithm are combined to improve the analysis accuracy of electricity theft detection and realize longitudinal electricity theft detection.The simulation results show that the combined detection model can accurately determine the abnormal branch of electric larceny and locate the users on the branch of electric larceny,and effectively screen out the suspected users of electric larceny in the power network.
作者
李波
曹敏
朱元静
李仕林
张林山
林聪
王先培
LI Bo;CAO Min;ZHU Yuanjing;LI Shilin;ZHANG Linshan;LIN Cong;WANG Xianpei(Electric Power Research Institute,Yunnan Power Grid Co.,Ltd.,Kunming 650217,China;Key Laboratory of CSG for Electric Power Measurement,Kunming 650217,China;Yunnan Minzu University,Yunnan 650504,China;School of Electronic Information,Wuhan University,Wuhan 430072,China)
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2019年第12期1121-1128,共8页
Engineering Journal of Wuhan University
基金
南方电网公司重点项目(编号:YNKJQQ00000283)
云南电网公司重点项目(编号:YN2014-2-001)
关键词
窃电检测
支持向量机
粒子群算法
负荷预测
electricity theft detection
support vector machine
particle swarm algorithm
load forecasting