期刊文献+

基于变分贝叶斯理论的GPS/INS组合导航系统 被引量:10

GPS/INS integrated navigation system based on variational
下载PDF
导出
摘要 为了解决GPS/INS松耦合导航系统中量测噪声未知所导致的滤波精度下降的问题,提出一种基于变分贝叶斯估计的卡尔曼滤波算法(VB-KF)。该算法假设量测噪声均值为0,方差服从参数未知的逆Gamma分布。通过因式分解的自由形式分布近似状态和噪声方差的联合后验分布,采用卡尔曼滤波算法估计状态,利用变分贝叶斯理论估计噪声参数,以获得系统最优的后验分布。实验结果表明,相比于传统的K F算法,该算法可实时准确估计系统状态和噪声参数,提高了滤波精度。 Considering the gap of filtering accuracy degradationcaused by the absence of measurement noise variance in GPS/INS loosely coupled navigation system,a Kalman filtering algorithm based on variational Bayesian inference(VBKF)is proposed.The algorithm assumes that the mean of measurement noise is zero,and the variance obeys the inverse Gamma distribution with unknown parameters.The joint posterior distribution of the state and noise variance is obtained by a factorized free form distribution.Kalman filter is used to estimate the state and the variational Bayesian theory is used to estimate the noise parameters to obtain the optimal posterior distribution of the system.The experimental results demonstrate that VB-KF,compared with the traditional KF algorithm,can estimate the system state and noise parameters accurately in real tim e,and improve the filtering accuracy.
作者 王艳 高嵩 马天力 陈超波 李磊 杨琼楠 Wang Yan;Gao Song;Ma Tianli;Chen Chaobo;Li Lei;Yang Qiongnan(School of Electronic and Information Engineering,Xi’an Technological University,Xi’an 710021,China)
出处 《国外电子测量技术》 2019年第11期5-10,共6页 Foreign Electronic Measurement Technology
基金 陕西省科技厅项目(2019GY-069)资助
关键词 卡尔曼滤波 逆Gamma分布 变分贝叶斯估计 组合导航 Kalman filter inverse gamma distribution variational Bayesian inference integrated navigation
  • 相关文献

参考文献9

二级参考文献88

  • 1王冲,曾庆军.自适应滤波算法在AUV组合导航中的方法[J].中南大学学报(自然科学版),2013,44(S2):155-159. 被引量:8
  • 2范文兵 张素贞.基于有限差分的扩展卡尔曼滤波器[A]..中国控制与决策学术年会论文集[C].沈阳:东北大学出版社,2002.218—221. 被引量:1
  • 3邓自立 郭一新.油田产量、产水量动态预报[J].自动化学报,1993,19(2):121-125. 被引量:1
  • 4Ribeiro A, GIANNAKIS G B. Bandwidth-constrained distributed estimation for wireless sensor networks--Part I:Gaussian case. IEEE Trans. Signal Process, 2005; 54(3): 1131--1143. 被引量:1
  • 5Blatt D, HERO A. Distributed maximum likelihood estimation for sensor networks. In: Proc. of the ICASSP, Montreal, Canada, 2004; 3(5): 929--932. 被引量:1
  • 6Xiao J J, LUO Z Q. Decentralized estimation in an inhomo- geneous sensing environment. IEEE Trans. Inf. Theory, 2005; 51(10): 3564--3575. 被引量:1
  • 7Sivagnanasundaram RAMANAN, John MACLAREN WALSH. Distributed estimation of channel gains in wire- less sensor networks. IEEE Trans. Signal Process, 2010; 58(6): 3097--3107. 被引量:1
  • 8RIBEIRO A, GIANNAKIS G. Bandwidth-constrained distributed estimation for wireless sensor networks--part II: unknown probability density function. IEEE Trans. Signal Process, 2006; 54(7): 2784--2796. 被引量:1
  • 9WU T, CHENG Q. Distributed estimation over fading channels using one-bit quantization. Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2008: 1968-1972. 被引量:1
  • 10LUO Z Q. Universal decentralized estimation in a band- width constrained sensor network. IEEE Trans. Inf. Theory, 2005; 51(6): 2210-2219. 被引量:1

共引文献61

同被引文献98

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部