期刊文献+

一种运用于医学图像去噪的变分偏微分模型

A Variational Partial Differential Model for Medical Image Denoising
下载PDF
导出
摘要 在医学技术中,医学影像学已成为发展最为迅速的领域之一•文章研究了偏微分方程模型同时在不同方向上对图像进行处理,其扩散程度的现象表明,变分偏微分比常微分方程处理的图像质量要高,边界解决问题要好,并且极大地降低了系统所需运算速度。通过将图像输入中值滤波器,利用输出结果的虚部求扩散系统,再用此系统对边缘检测函数进行8个邻域的扩散计算.根据实验结果可以得出,采用该处理模型不仅能提高图像的质量,更能保持边界不失真,效果非常显著. In medical technology,medical imaging has become one of the fastest growing fields.This paper studied that the partial differential equation model processed the image in different directions at the same time・The phenomenon of diffusion degree shows that image quality of the variational partial differentialprocessing is higher than that of the ordinary differential equation,the boundary solving problem is better,and the operation speed of the system is greatly reduced.By inputting the image into the median filter,the imaginary part of the output result is used to find the diffusion system,and then the system performs the diffusion calculation of the eight neighborhoods of the edge detection function.According to the experimental results,it can be concluded that the processing model can not only improve the image quality,but also maintain the boundary without distortion,and the effect is very significant.
作者 沈良生 SHEN Liang-sheng(Department of Electronic Information,Anqing Vocational and Technical College,Anqing 246003,China)
出处 《白城师范学院学报》 2019年第10期15-18,共4页 Journal of Baicheng Normal University
基金 安徽省自然科学研究项目(KJ2016A447)
关键词 偏微分方程 异性复扩散 中值预滤波 去噪 partial differential equations heterostatic diffusion median pre-filtering denoising
  • 相关文献

参考文献4

二级参考文献22

  • 1LI LEIMING, HAN MING, HUANG YUQING. Map building based on line feature matching[ C]// Proceedings of the 8th World Congress on Intelligent Control and Automation. Piscataway, NJ: IEEE, 2010:6125 - 6129. 被引量:1
  • 2HUANG YUQING, YANG JIA. Study of robot landmark recognition with complex background [ C]// ICMIT 2007: Mechatronics, MEMS, and Smart Materials. [ S.l. ] : SPIE, 2007:1 - 6. 被引量:1
  • 3WITKIN A P. Scale space filtering[ C] // Proceedings of the 8th International Joint Conference on Artifical Intelligence. Karlsruhe, Germany: [ s. n. ], 1983:1019 - 1022. 被引量:1
  • 4PERONA P, MALIK J. Scale-space and edge detection using anisotropic diffusion[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7) : 619 -639. 被引量:1
  • 5RUDIN L I, OSHER S, FATEM E. Nonlinear total variation based noise removal algorithms[ J]. Physica D, 1992, 60(1/2/3/4) : 259 - 268. 被引量:1
  • 6YU LI-YOU, KAVEH M. Four-order partial differential equations for noise removal [ J]. IEEE Transactions on Image Processing, 2000,9(10) : 1723 - 1729. 被引量:1
  • 7LYSAKER M, LUNDERVOLD A, TAI X-C. Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[ J]. IEEE Transactions on Image Processing, 2003, 12(12) : 1579 - 1590. 被引量:1
  • 8V Caselles,F Catte,T Coll,et al.A geometric model for actiw, contom,'s in image processing [J].Numer Math, 1993,66( 1 ):1-3 1. 被引量:1
  • 9Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J]. Int J Comput Vison, 1997,22( 1 ):61-79. 被引量:1
  • 10Weickert J.Anisotropic Diffusion in Image Processing [M]. ECMI Series,Teutmer-Verlag, Stuttgart, Germany, 1998. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部