期刊文献+

基于非中心卡方分布最大值的球形译码检测算法

Spherical Decoding Detection Algorithm Based on the Maximum Value of Non-central Chi-square Distribution
下载PDF
导出
摘要 为了使最大似然(ML)检测达到更小的计算复杂度,构建基于非中心卡方分布最大值的球形译码(SD)检测算法,并展开仿真测试来达到最优误码性能。研究结果得到:无论在何种算法下,随着信噪比的增加,误比特率均表现出单调减小的变化规律,变化都平缓。当天线数量变化后,采用不同检测算法得到具有良好重合状态的曲线,其中MSD与ESD达到最优检测性能。在Nt≤Nr条件下,采用改进算法可以获得比ML检测与SD检测更低的复杂度,特别是对于低信噪比情况具有更明显的优势。在Nt>N的条件下,MSD复杂度比TSD减小近20%,ESD相关复杂度可以比MSD降低2%左右。 In order to reduce the computational complexity of maximum likelihood(ML) detection, the spherical decoding(SD) detection algorithm based on the maximum value of non-central chi-square distribution is constructed, and the simulation test is carried out to achieve the optimal error performance. The results show that the bit-error rate decreases monotonically with the increase of signal-to-noise ratio(SNR) in any algorithm. After the number of antennas changes, different detection algorithms are adopted to obtain curves with good coincidence state, in which MSD and ESD achieve the optimal detection performance. Under the condition of Nt Nr, the improved algorithm can achieve lower complexity than ML detection and SD detection, especially for low SNR.Under the condition of Nt > N, the complexity of MSD is nearly 20% lower than that of TSD, and esd-related complexity is about 2% lower than that of MSD.
作者 崔校瑞 CUI Xiao-rui(School of Electric Power,South China University of Technology,Guangzhou 510641 China)
出处 《自动化技术与应用》 2019年第12期154-156,159,共4页 Techniques of Automation and Applications
关键词 球形译码 检测算法 最大似然 计算复杂度 spherical decoding detection algorithm maximum likelihood computational complexity
  • 相关文献

参考文献15

二级参考文献126

  • 1Sellathurai M and Haykin S. Turbo-BLAST for wireless communications: theory and experiments [J]. IEEE Transactions on Signal Processing, 2002, 50(10): 2538-2546. 被引量:1
  • 2Haykin S, Sellathurai M, De Jong Y, et al.. Turbo-MIMO forwireless communications [J]. IEEE Communications Magazine, 2004, 42(10): 48-53. 被引量:1
  • 3Hochwald B M and Ten Brink S. Achieving near-capacity on a multiple-antenna channel [J]. IEEE Transactions on Communications, 2003, 51(3): 389-399. 被引量:1
  • 4de Jong Y and Willink T J. Iterative tree search detection for MIMO wireless systems [J]. IEEE Transactions on Communications, 2005, 53(6): 930-935. 被引量:1
  • 5Yue J, Kim K J, Gibson J D, et al.. Channel estimation and data detection for MIMO-OFDM systems [C]. Proceedings of IEEE GLOBECOM, San Francisco, USA, Dec. 2003: 581-585. 被引量:1
  • 6Barbero L G and Thompson J S. Fixing the complexity of the sphere decoder for MIMO detection [J]. IEEE Transactions on Wireless Communications, 2008, 7(6): 2131-2142. 被引量:1
  • 7Jalden J, Barbero L G, Ottersten B, et al.. The error probability of the fixed-complexity sphere decoder [J]. IEEE Transactions on Signal Processing, 2009, 57(7): 2711 2720. 被引量:1
  • 8Zheng C, Chu X, McAllister fixed-complexity sphere decoder QAM-MIMO systems [J]. IEEE Processing, 2011, 59(9): 4493-4499 J, et al.. for high Real-valued dimensional Transactions on Signal. 被引量:1
  • 9Barbero L G, Ratnarajah T, and Cowan C. A low-complexity soft MIMO detector based on the fixed-complexity sphere decoder [C]. Proceedings of IEEE ICASSP, Las Vegas, USA, March 2008: 2669-2672. 被引量:1
  • 10Kawai H, Higuchi K, Maeda N, et al.. Likelihood function for QRM-MLD suitable for soft-decision Turbo decoding and its performance for OFCDM MIMO multiplexing in multipath fading channel [J]. IEICE Transactions on Communications, 2005, E88-B(1): 47-57. 被引量:1

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部