期刊文献+

基于GRU神经网络研究不同证券市场对股票收益的影响——以恒生和上证指数为例

Study on the influence of different Securities Market on Stock return based on GRU Neural Network——Taking Hang Sheng and Shanghai Stock Exchange Index as an example
下载PDF
导出
摘要 大量研究表明,不同金融市场之间具有不可忽视的联系,股票作为金融资本市场中最具代表性的一部分,与其他金融证券市场的联系更为紧密。因此,针对不同金融市场的相互影响问题,以恒生、上证指数为例,提出建立神经网络模型。以两种指数的每日数据为样本,利用GRU(递归神经网络)神经网络的时间记忆性能,刻画出在加入不同证券指数特征的影响下,对上证股票指数收益的波动情况进行预测研究。训练和测试结果表明,GRU神经网络模型效果较为理想,而加入恒生指数特征的预测效果最好。这可以为后续中外金融市场关系的研究提供一定的参考价值,对想要购买企业债券的操作者也具有较高的实际价值。 A large number of studies show that there is a relationship between different financial markets that can not be ignored,and stocks,as the most representative part of the financial capital market,are more closely related to other financial securities markets.Therefore,in view of the interaction between different financial markets,taking Hang Seng and Shanghai Stock Exchange Index as an example,a neural network model is proposed.Taking the daily data of the two indices as samples,using the time memory performance of GRU(recurrent neural network)neural network,this paper describes the volatility of Shanghai stock index return under the influence of different securities index characteristics.The training and test results show that the GRU neural network model is more effective,while the Hang Seng index feature is the best.This can provide a certain reference value for the follow-up study of the relationship between Chinese and foreign financial markets,and also has a high practical value for operators who want to buy corporate bonds.
作者 余强 YU Qiang(School of Management,Shanghai University of science and Technology,Shanghai 200093,China)
出处 《经济研究导刊》 2019年第35期117-120,共4页 Economic Research Guide
关键词 收益预测 上证企债指数 恒生指数 GRU earnings forecast Shanghai Enterprise Bond Index Hang Sheng Index GRU
  • 相关文献

参考文献2

二级参考文献24

  • 1施久玉,胡程鹏.股票投资中一种新的技术分析方法[J].哈尔滨工程大学学报,2004,25(5):680-684. 被引量:4
  • 2李立辉,田翔,杨海东,胡月明.基于SVR的金融时间序列预测[J].计算机工程与应用,2005,41(30):221-224. 被引量:12
  • 3Engle R F. Autoregressive conditional heteroskedasticity with estimates of the variance of U. K. Inflation[ M]. Econometrica,1982. 被引量:1
  • 4Bollerslev T. A generalized autoregressive conditional heteroskedasticity [ J ]. Journal of econometrics, 1986,31 (3) :307 - 327. 被引量:1
  • 5French K R, Schwert G W, Stambangh R. Expected stock returns and volatility[ J]. Journal of Financial Economics, 1987,19 (87) :3 - 29. 被引量:1
  • 6Ghysels E, Harvey A Renault. Stochastic volatility[ M ]. Elseier Science Publishers, 1995. 被引量:1
  • 7Jun Y U. Forecasting volatility in the New Zealand stock market [ J ]. Journal of Financial Economics,2002,12 ( 3 ) : 193 - 202. 被引量:1
  • 8Cortes C, Vapnik V. Support-vector Networks [ C ]//Machine Learning, 1995:273 - 297. 被引量:1
  • 9Matsuba I. Application of neural network sequential associator to long- te- rm stock price prediction [ C ]//IJCNN. 91, Singarporee, 1991:1196 - 1202. 被引量:1
  • 10Rumelhart D E, Hinton G E, Williams R J. Learning Internal Re- pres- entations by. error Propagation [ C ]//Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1986,1. 被引量:1

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部