期刊文献+

结式循环矩阵的运算及性质

Operation and Properties of the Resultant Cyclic Matrix
下载PDF
导出
摘要 主要研究一类特殊的循环矩阵即结式循环矩阵。利用多项式矩阵的结式循环矩阵法以及矩阵的广义逆理论,将矩阵与多项式理论结合起来,给出了结式循环矩阵的运算及性质。 In this paper,we study a special kind of cyclic matrix the resultant cyclic matrix,using the method of resultant cyclic matrix polynomial matrix and generalized inverse matrix theory,combined with polynomial matrix theory,by using the characteristic polynomial of knot type circulating matrix,the matrix calculations with the combination of the arithmetic polynomial operations and settle type operation and properties of cyclic matrix are given.
作者 刘兴祥 张宇 王姣 LIU Xing-xiang;ZHANG YU;WANG JIAO(School of Mathematics and Computer Science,Yan′an University,Yan′an 716000,China;School of and Science,Northwest A&F University,Xianyang 712000,China;School of Information and Control Engineering,Xi′an University of Architecture and Technology,Xi′an 710000,China)
出处 《延安大学学报(自然科学版)》 2019年第4期24-28,共5页 Journal of Yan'an University:Natural Science Edition
关键词 多项式矩阵 结式循环矩阵 特征多项式 polynomial matrix resultant cyclic matrix characteristic polynomial
  • 相关文献

参考文献8

二级参考文献19

  • 1周金土.关于分块g-循环矩阵特征值的计算[J].工程数学学报,1995,12(4):13-20. 被引量:1
  • 2田素霞,李淑玲.分块对称反循环矩阵的性质[J].河南科学,2006,24(3):313-315. 被引量:1
  • 3[1]SALEHI J A.Code division multiple-acccss techniques in optical fiber networks-part I:fundamental principles[J].IEEE Trans on Commun,1989,37(8):824-833. 被引量:1
  • 4[2]KAMAKURA K,SASASEI.A new modulation scheme using asymmetric erorr-correcting codes embedded in optical orthogonal codes for optical CDMA[J].1EEE J Lightwave Tech,2001,19(12):1839-1850. 被引量:1
  • 5[3]HUANG W,NIZAM M H M,ANDONOVIC I,et a1.Coherent optical CDMA (OCDMA)systems used for high-capacity optical fiber networks-system description.OTDMA comparison and OCDMA/WDMA networking[J].IEEE J Lightwave Tech,2000,18(6):765-778. 被引量:1
  • 6[4]CHUNG F R K,ALEHI J A S,WEI V K.Optical orthogonal codes:design,analysis and applications[J].IEEE Trans on Inform Theory,1989,37(5):595-604. 被引量:1
  • 7[5]WANG G Q.Matrx methods of constructing wavelet filters and discrete hyper-wavelet transforms[J].Optical Engineering,2000,39,1080-1087. 被引量:1
  • 8[6]DAI Dao-qing.Wavelets and orthogonal polynomial based on harmonic engenstates[J].Journal of Math Phys,2000,41(5):3086-3103. 被引量:1
  • 9[7]DAUBECHIES I.Ten lectures on wavelets[M].Philadelphia:SIAM Pulb,1992. 被引量:1
  • 10[8]COHEN A,DAUBECHIES I,VIAL P.Wavelets on the interval and fast wavelet transforms[J].Appl Comp Harmonic Analysis,1993,(1):54-81. 被引量:1

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部