期刊文献+

齿轮传动系统非线性频率调制规律仿真分析及实验研究

NONLINEAR FREQUENCY MODULATION ANALYSIS OF GEAR SYSTEM BASED ON EXPERIMENT AND SIMULATION
下载PDF
导出
摘要 针对传统快速傅里叶变换(FFT)研究齿轮系统非线性非平稳振动存在虚假信号和假频的问题,提出了基于希尔伯特黄变换的本征模态函数(IMFs)傅里叶变换法。该方法通过经验模态分解(EMD)将原始信号分解为一系列不同时间特征尺度的IMFs,对能够反映原始信号物理意义的IMF进行傅里叶变换。以某型采煤机截割部齿轮箱为工程范例,通过振动实验得到齿轮系统非线性振动响应。分别利用传统FFT法和本征模态函数FFT法对实测信号进行非线性振动分析。研究结果表明:本征模态函数FFT法显著减少了多余且无意义的频率成分,能够更好地识别参与非线性频率调制的齿轮啮合特征频率,避免了传统FFT法产生的虚假频率干扰。该研究对分析齿轮转子系统非线性频率调制现象具有一定的参考价值。 Conventional fast Fourier transform(FFT)has been the most popular method of processing non-stationary and nonlinear signals.However,FFT has been known to be less efficient because of aliasing.In view of such constraints,this paper proposes a new method based on Hilbert-Huang transform-FFT of intrinsic mode functions(IMFs).In the present work,FFT of IMFs from HHT process has been incorporated to utilize efficiency of FFT in frequency domain.Take transmission system of mining machine cutting department for example,nonlinear vibration signals has been measured by experiment.Conventional FFT and FFT of intrinsic mode functions(IMFs)are used for analyzing the nonlinear modulation characteristics of the experimental signals respectively.The comparative analysis presented in this paper indicates the effectiveness of using FFT of IMFs for recognizing the frequency components which participate in nonlinear frequency modulation.The method proposed can avoid the phenomenon of aliasing.
作者 王珏 周航 张颖博 张睿 WANG Jue;ZHOU Hang;ZHANG YingBo;ZHANG Rui(Department of Information Engineering Liaoning Economic Vocational Technological Institute,Shenyang 110122,China;Fuxin Del Auto Parts Co.,Ltd.,Fuxin 123000,China;School of Mechanism and Automation,Northeastern University,Shenyang 110819,China)
出处 《机械强度》 CAS CSCD 北大核心 2019年第6期1286-1291,共6页 Journal of Mechanical Strength
基金 国家重点基础研究计划(973)(2014CB046303)资助~~
关键词 希尔伯特-黄变换 本征模态函数 傅里叶变换 频率调制 Hilbert-Huang transform Intrinsic mode function Fourier transform Frequency modulation
  • 相关文献

参考文献13

二级参考文献112

共引文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部