期刊文献+

基于Ohta颜色空间的多信息融合火焰检测 被引量:5

Multi-information Fusion Flame Detection Based on Ohta Color Space
下载PDF
导出
摘要 为了能够快速准确地检测到火焰,预防火灾的发生,提出了一种在Ohta颜色检测的基础上使用饱和度和Otsu阈值分割法相结合的算法。采用该算法可以实时、准确地检测出疑似火焰区域,然后对其进行圆形度、矩形度、重心高度系数特征分析,并结合LBP纹理分析,最后再通过SVM进行判定。实验结果表明,该算法能够准确地检测出火焰,且实时性和准确率都得到了显著提高。 Traditional fire detection methods utilize sensors to collect information on smoke particles, flame temperature and relative humidity, and then, evaluate and respond to fires. Since these sensors must be placed near the flame, the traditional detection methods cannot be used in scenes with extreme interference to the sensors. Besides,these traditional methods are also difficultly applied in large spaces, open spaces, and complex scenes. Especially, these traditional methods difficultly confirm descriptive information such as fire location, flame size, and fire development status and have low real-time performance and accuracy. In order to prevent the occurrence of fires, the flame should be detected quickly and accurately. Video flame detection is suitable for complex physical environments, and has low cost,high detection rate, and short response time. By analyzing the static and dynamic characteristics of the flame, this paper proposes an Ohta color space detection and combination of saturation with Otsu threshold segmentation method, which can effectively outline the possible region of flames in real time. By circularity, rectangularity, center-of-gravity-height coefficient, combining with LBP texture analysis, these regions can be featured and judged via SVM method. Finally, it is shown from experimental results that the proposed algorithm can accurately detect the flame and effectively improve the real-time performance and accuracy.
作者 刘佳丽 叶炯耀 LIU Jiali;YE Jiongyao(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期962-969,共8页 Journal of East China University of Science and Technology
关键词 背景差分模型 Ohta颜色检测 饱和度 SVM background difference model Ohta color detection saturation SVM
  • 相关文献

参考文献6

二级参考文献66

  • 1曹其新,刘成良,殷跃红,付庄,永田雅辉.基于彩色图像处理的西红柿品质特征的提取研究[J].机器人,2001,23(S1):652-656. 被引量:9
  • 2程鑫,王大川,尹东良.图像型火灾火焰探测原理[J].火灾科学,2005,14(4):239-245. 被引量:37
  • 3党向盈,吴锡生,赵勇.新的基于边缘检测提高图像质量的插值算法[J].计算机工程与设计,2007,28(15):3636-3639. 被引量:7
  • 4Healey G, Slater D, I.in T,et al. A system for real-time fire detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 1993 : 605-606. 被引量:1
  • 5Toreyin B U, Dedeoglu Y, Cetin A E. Flame detection in video using hidden markov models[C]// proceedings of IEEE ICIP. [s. l.]:IEEE,2005:11-14. 被引量:1
  • 6Chen T, Kao C, Chang S. An intelligent real-time fire-detection method based on video processing[C]//Proceedings of IEEE 37th An-nual 2003 International Car nahan Conference on Seeur-ity Technology. Taiwan: IEEE, 2003:104-111. 被引量:1
  • 7Horng W B, Peng J W, Chen C Y. A new image-based real-time flame detection method using color analysis[C]//Proceedings of the 2005 IEEE International Conference on Networking, Sensing and Control. Tucson, Arizona, USA: IEEE, 2005 : 100. 被引量:1
  • 8Yamagishi H, Yamaguchi J. A contour fluctuation data processing method for fire flame detection using a color camera[C]// IEEE 26th Annual Conferenceo n IECON of the Industrial Electronics Society. Nagoya, Japan: IEEE, 2000: 824-829. 被引量:1
  • 9Lu T,Peng C, Horng W, et al. Flame feature model development and its application to flame detection[C]//Proceedings of the First. International Conference on Innovative Computing, Information and Control. Beijing: IEEE, 2006: 158-161. 被引量:1
  • 10Yamagishi H, Yamaguchi J. Fire flame detection algorithm using a color camera[C]//Proceedings of 1999 International Symposium on Micromechatronics and Human Science. Nagoya,Japan: IEEE, 1999 : 255-260. 被引量:1

共引文献101

同被引文献22

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部