期刊文献+

Generating Questions Based on Semi-Automated and End-to-End Neural Network 被引量:1

下载PDF
导出
摘要 With the emergence of large-scale knowledge base,how to use triple information to generate natural questions is a key technology in question answering systems.The traditional way of generating questions require a lot of manual intervention and produce lots of noise.To solve these problems,we propose a joint model based on semi-automated model and End-to-End neural network to automatically generate questions.The semi-automated model can generate question templates and real questions combining the knowledge base and center graph.The End-to-End neural network directly sends the knowledge base and real questions to BiLSTM network.Meanwhile,the attention mechanism is utilized in the decoding layer,which makes the triples and generated questions more relevant.Finally,the experimental results on SimpleQuestions demonstrate the effectiveness of the proposed approach.
出处 《Computers, Materials & Continua》 SCIE EI 2019年第8期617-628,共12页 计算机、材料和连续体(英文)
基金 supported by National Nature Science Foundation(No.61501529,No.61331013) National Language Committee Project of China(No.ZDI125-36) Young Teachers'Scientific Research Project in Minzu University of China.
  • 相关文献

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部