期刊文献+

A Weighted Threshold Secret Sharing Scheme for Remote Sensing Images Based on Chinese Remainder Theorem 被引量:4

下载PDF
导出
摘要 The recent advances in remote sensing and computer techniques give birth to the explosive growth of remote sensing images.The emergence of cloud storage has brought new opportunities for storage and management of massive remote sensing images with its large storage space,cost savings.However,the openness of cloud brings challenges for image data security.In this paper,we propose a weighted image sharing scheme to ensure the security of remote sensing in cloud environment,which takes the weights of participants(i.e.,cloud service providers)into consideration.An extended Mignotte sequence is constructed according to the weights of participants,and we can generate image shadow shares based on the hash value which can be obtained from gray value of remote sensing images.Then we store the shadows in every cloud service provider,respectively.At last,we restore the remote sensing image based on the Chinese Remainder Theorem.Experimental results show the proposed scheme can effectively realize the secure storage of remote sensing images in the cloud.The experiment also shows that no matter weight values,each service providers only needs to save one share,which simplifies the management and usage,it also reduces the transmission of secret information,strengthens the security and practicality of this scheme.
出处 《Computers, Materials & Continua》 SCIE EI 2019年第2期349-361,共13页 计算机、材料和连续体(英文)
基金 This research was partly supported by(National Natural Science Foundation of China under 41671431,61572421 and Shanghai Science and Technology Commission Project 15590501900.
  • 相关文献

参考文献3

二级参考文献36

  • 1[1]G.R Blakey. Safeguarding Cryptographic Keys. Proc. NCC, AFIPS Press, Montvale, 1979,48: 313-317. 被引量:1
  • 2[2]G. R. Blakely and C. Meadows. Security of Ramp Schemes, Crypto'84, Lecture Notes inComputer Sciences 196, pp411-431. 被引量:1
  • 3[3]R. M. Capocelli, A. De Santis, L. Garganos etc. On the Size of Shares for Secret Sharing Schemes[J]. Journal of Cryptology,Vol.6, 1993, 157-167. 被引量:1
  • 4[4]J. Gathen and J. Gerharad, Modern Computer algebra[M]. Cambridge university press, 1999. 被引量:1
  • 5[5]J. He and E. Dawson. Shared Secret Reconstruction, Designs, Codes and Cryptography, 14, 221-237 (1998). 被引量:1
  • 6[6]John D. Lipson. Chinese Remainder and Interpolation algorithm, Proceedings of ACM Symposium on Symbolic and Algebraic Computation[M]. ACM Press, 1971.372-391. 被引量:1
  • 7[7]C. Padro,G. Saez, and J. Villar. Detection of Cheaters in Vector Space Secret Sharing Schemes,Designs,Codes and Cryptography.16, 75-85 (1999). 被引量:1
  • 8[8]A. Shamir. How to share a secret[J]. Communication of ACM, 1979,22: 612-613. 被引量:1
  • 9[9]G. J. Simmons. An introduction to shared secret/or shared control schemes and their applications, Contemporary Cryptology:The science of information integrity. IEEE Press,1992. 441-497. 被引量:1
  • 10[10]D. R. Stinson. Cryptography: Theory and Practice[M]. CRC Press, 1995. 被引量:1

共引文献159

同被引文献15

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部