期刊文献+

Protein Secondary Structure Prediction with Dynamic Self-Adaptation Combination Strategy Based on Entropy 被引量:1

下载PDF
导出
摘要 The algorithm based on combination learning usually is superior to a singleclassification algorithm on the task of protein secondary structure prediction. However,the assignment of the weight of the base classifier usually lacks decision-makingevidence. In this paper, we propose a protein secondary structure prediction method withdynamic self-adaptation combination strategy based on entropy, where the weights areassigned according to the entropy of posterior probabilities outputted by base classifiers.The higher entropy value means a lower weight for the base classifier. The final structureprediction is decided by the weighted combination of posterior probabilities. Extensiveexperiments on CB513 dataset demonstrates that the proposed method outperforms theexisting methods, which can effectively improve the prediction performance.
出处 《Journal of Quantum Computing》 2019年第1期21-28,共8页 量子计算杂志(英文)
  • 相关文献

参考文献1

二级参考文献25

  • 1武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 2Levitt M, Chothia C. Structural patterns in globular proteins[J]. Nature, 1976, 261 (5561) : 552 - 558. 被引量:1
  • 3Nakashima H, Nishikawa K. Discrimination of intracellular and extraeellular proteins using amino acid composition and residue- pair frequencies[ J]. Journal of Molecular Biology, 1994, 238 (1): 54 -61. 被引量:1
  • 4Bu Weishu, Feng Zhiping, Zhang Ziding, et al. Prediction of protein (domain) structural classes based on amino-acid index [ J ]. European Journal of Biochemistry, 1999, 266 ( 3 ) : 1043 - 1049. 被引量:1
  • 5Chou Kuoehen. Prediction of protein cellular attributes using pseudo-amino acid composition [ J ]. Proteins: Structure, Function, and Bioinformaties, 2001, 43(3 ) : 246 - 255. 被引量:1
  • 6Ding CHQ, Dubehak 1. Multi-class protein fold recognition using support vector machines and neural networks [ J ]. Bioinformaties, 2001, 17 (4) : 349 - 358. 被引量:1
  • 7Liu Taigang, Zheng Xiaoqi, Wang Jun. Prediction of protein structural class using a complexity-based distance measure [ J ]. Amino Acids, 2010, 38(3) : 721 -728. 被引量:1
  • 8Wu Li, Dai Qi, Han Bin, et al. Prediction of protein structural class using a combined representation of protein-squence information and support vector machine[ C ]//Bioinformatics and Biomedicine Workshops (BIBMW). HongKong: IEEE, 2010: 101 - 106. 被引量:1
  • 9Cai YD, Feng KY, Lu WC, et al. Using logitboost classifier to predict protein structural classes [ J ]. Journal of Theoretical Biology[ J]. 2006, 238( 1 ) : 172 - 176. 被引量:1
  • 10Feng KY, Cai YD, Chou KC. Boosting classifier for predicting protein domain structural class[J]. Biochemical and Biophysical Research Communications, 2005, 334 ( 1 ) : 213 - 217. 被引量:1

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部