期刊文献+

氯化铁改性甘蔗渣炭吸附氨态氮的研究 被引量:4

Study on Adsorption of Ammonia Nitrogen by Ferric Chloride Modified Bagasse Carbon
下载PDF
导出
摘要 以甘蔗渣为原材料,450℃下制备了生物质炭,并用氯化铁作为改性剂对甘蔗渣炭进行改性。探讨了氯化铁改性甘蔗渣炭对氨氮吸附的影响因素及最佳吸附条件,并进一步讨论了其吸附机理。根据响应面实验结果,确定改性甘蔗渣炭对氨氮的最佳吸附条件为:氨氮初始质量浓度为25mg·L^-1、pH=10、吸附时间为190min,在此条件下,改性炭的吸附容量为2.65mg·g^-1。对实验结果进行数据拟合分析,Langmuir等温吸附方程可以描述常温下改性前后的甘蔗渣生物质炭对氨氮吸附表面吸附机理。吸附动力学研究表明,假二阶动力学方程可以更好地描述动力学吸附过程,改性炭吸附氨氮的过程主要以化学吸附为主。 Biomass charcoal was prepared from bagasse at 450℃,and bagasse charcoal was modified with ferric chloride.The influence factors and optimal adsorption conditions of ferric chloride modified bagass carbon on ammonia nitrogen were discussed.According to response surface test results,the optimal adsorption conditions of modified bagasse carbon for ammonia nitrogen were determined as followed:initial mass concentration of ammonia nitrogen was 25mg/L,pH=10,adsorption time was 190min,and the adsorption capacity of modified carbon was 2.65mg/g.According to the data fitting analysis of the experimental results,Langmuir isothermal adsorption equation could describe the mechanism of ammonia nitrogen adsorption on the surface of sugarcane leaf biomass carbon before and after modification at room temperature.Study results of adsorption kinetics showed that pseudo-second order kinetic equation could better describe the kinetic adsorption process.
作者 柳富杰 周永升 梁婷钰 韦巧艳 李大成 LIU Fujie;ZHOU Yongsheng;LIANG Tingyu;WEI Qiaoyan;LI Dacheng(College of Food and Biochemical Engineering,Guangxi Science and Technology Normal University,Laibin 546199,China)
出处 《化工技术与开发》 CAS 2019年第12期53-57,共5页 Technology & Development of Chemical Industry
基金 广西糖资源工程技术研究中心培育建设项目(桂科AD16450040) 广西高校制糖工程综合技术重点实验室培育建设项目(桂教科研[2016]6号) 广西高校中青年教师基础能力提升项目(2018KY0696)
关键词 生物质炭 氯化铁 甘蔗渣 氨氮 biomass charcoal ferric-chloride bagass ammonia-nitrogen
  • 相关文献

参考文献3

二级参考文献74

  • 1刘婷,杨志山,朱晓帆,张裕书.改性稻草秸秆对重金属Pb^(2+)吸附作用研究[J].环境科学与技术,2012,35(S2):41-44. 被引量:19
  • 2尤铁学,王楠.二苯碳酰二肼分光光度法测定水中铬(Ⅵ)的改进[J].冶金分析,2006,26(6):84-85. 被引量:26
  • 3APHA (American Public Health Association), 1998. Standard Methods for the Examination of Water and Wastewater. Washington DC, USA. 被引量:1
  • 4Banks E, Chianelli R, Korenstein R, 1975. Crystal chemistry of struvite analogs of the type MgMPO4-6H20 (M^+= potassium(1+), rubidium(1+), cesium(1+), thallium(1+), ammonium(1+)). Inorganic Chemistry, 14: 1634-1639. 被引量:1
  • 5Booker N A, Priestley A J, Fraser I H, 1999. Struvite formation in wastewater treatment plants: opportunities for nutrient recovery. Environmental Technology, 20: 777-782. 被引量:1
  • 6Celen I, Turker M, 2001. Recovery of ammonia from anaerobic digester effluents. Environmental Technology, 22: 1263-1272. 被引量:1
  • 7Doyle J D, Parsons S A, 2002. Struvite formation, control and recovery. Water Research, 36: 3925-3940. 被引量:1
  • 8Gadekar S, PuUammanappallil P, 2010. Validation and applications of a chemical equilibrium model for struvite precipitation. Environmental Modeling and Assessment, 15: 201-209. 被引量:1
  • 9Hao X D, Wang C C, Lan L, van Loosdrecht M C M, 2008. Struvite formation, analytical methods and effects of pH and Ca^2+. Water Science and Technology, 58(8): 1687-1692. 被引量:1
  • 10Harada H, Shimizu Y, Miyagoshi Y, Matsui S, Matsuda T, Nagasaka T, 2006. Predicting struvite formation for phos-phorus recovery from human urine using an equilibrium model. Water Science and Technology, 54(8): 247-255. 被引量:1

共引文献81

同被引文献58

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部