期刊文献+

基于聚类降维和视觉注意机制的高光谱影像分类 被引量:6

Hyperspectral Image Classification Based on Clustering Dimensionality Reduction and Visual Attention Mechanism
原文传递
导出
摘要 将基于多尺度显著性检测的视觉注意机制引入到高光谱影像的噪声去除和图像增强处理中,并基于分层聚类算法,提出一种结合聚类降维和视觉注意机制的高光谱影像分类方法。以Indian数据集和Pavia数据集为例,开展降维、显著性映射图获取和支持向量机监督分类实验。结果表明,本文方法能够较大地提升高光谱影像的分类精度和效率。 A multi-scale saliency detection-based visual attention mechanism is introduced to eliminate noise and enhance the quality of the hyperspectral images.Further,a hyperspectral image classification method is proposed by combining the clustering dimensionality reduction and visual attention mechanism in accordance with the hierarchical clustering algorithm.Subsequently,dimensionality reduction,acquisition of saliency mapping,and support-vectormachine-supervised classification experiments are conducted by considering the Indian and Pavia datasets as examples.The results denote that the proposed method can considerably improve the classification accuracy and efficiency of hyperspectral images.
作者 曾朝平 琚丽君 张建辰 Zeng Chaoping;Ju Lijun;Zhang Jianchen(Department of Space Information Engineering,Henan College of Surveying and Mapping,Zhengzhou,Henan 450015,China;College of Environment and Planning,Henan University,Kaifeng,Henan 475004,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第21期238-244,共7页 Laser & Optoelectronics Progress
基金 河南省教育厅教改项目(ZJA15132)
关键词 遥感 图像分类 聚类降维 视觉注意机制 多尺度显著性检测 remote sensing image classification clustering dimensionality reduction visual attention mechanism multi-scale saliency detection
  • 相关文献

参考文献3

二级参考文献94

共引文献111

同被引文献48

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部