期刊文献+

图上博弈的Page-Shapley值 被引量:5

The Page-Shapley values for graph games
原文传递
导出
摘要 对合作博弈(N,v)和交流图(N,L)所产生的交流局面(N,v,L),现有的分配法则都是重新定义一个特征函数,再归结为新特征函数的Shapley值.为了避免定义新特征函数时的失真(从而使得计算Shapley值出现一定偏差),本文提出一个新的分配法则.设原博弈(N,v)的Shapley值为Sh(N,v)=(s1,s2,…,sn),其中si可视为参与者i的实力.类似于Google的网络搜索算法,对连通的交流图L和表示参与者相互合作程度的转移矩阵P,定义参与者的PageRank(参与者的级别或地位),记为(r1,r2,…,rn),其中ri表示参与者i在合作交流中的地位.新的分配法则,称为Page-Shapley值:其中参与者i所得为cNrisiv(N),而cN取为1/∑j∈N rjsj以便保证值的有效性.当L不连通时,其Page-Shapley值由各分支的Page-Shapley值拼接而成. Let(N,v)be a cooperative game and(N,L)a graph.Consider the communication situation(N,v,L).The known allocation rules are obtained by defining new characteristic functions and their Shapley values.To avoid the distortion from defining new characteristic functions,we propose a new allocation rule.Let Sh(N,v)=(s1,s2,…,sn)be the Shapley value for the original game(N,v),in which si can be viewed as the personal ability of the player i.Similar to Google search,we define PageRank for the graph(N,L)associated with a matrix of cooperative coefficients,denoted by(r1,r2,…,rn),where ri signifies the importance of the player i in communication graph(N,L).Then we define an allocation rule,called Page-Shapley value,as follows.Let(N,L)be a connected graph.In Page-Shapley value,the share of the player i is cNri si v(N),where cN=1/∑j∈N rjsj to ensure the component efficiency,and v(N)can be replaced by the real worth of N in the game restricted by L.
作者 李理 单而芳 LI Li;SHAN Erfang(School of Management,Shanghai University,Shanghai 200444,China;Shanghai Businss School,Shanghai 201400)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2019年第11期2771-2783,共13页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(11971298)~~
关键词 交流局面 Myerson值 位置值 Page-Shapley值 communication situation Myerson value position value Page-Shapley value
  • 相关文献

参考文献3

二级参考文献14

  • 1Shapley L S. A value for n-person games[J]. Annals of Mathematics Studies, 1953, 28: 307-318. 被引量:1
  • 2Owen G. Value of games with a priori unions[C]// Henn R, Moeschlin O. Mathematical Economic and Game Theory, Springer-Verlag, Berlin, 1977: 76-88. 被引量:1
  • 3Hart S M, Kurz M. Endogenous formation of coalitions[J]. Econometrica, 1983, 51: 104-1064. 被引量:1
  • 4Peleg B. Introduction to the theory of cooperative games[M]. Jerusalem, Israel: Center for Research in Mathe- matical Economics and Game Theory, The Hebrew University, 1989. 被引量:1
  • 5V zquez-Brage M, van den Nouweland A, Garcla-Jurado I. Owen's coalitional value and aircraft landing fees[J]. Mathematical Social Sciences, 1997, 34: 273-286. 被引量:1
  • 6Hamiache G. A value with incomplete communication[J]. Games Economic Behavior, 1999, 26: 59-78. 被引量:1
  • 7Khmelnitskaya A B, Yanovskaya E B. Owen coalitional value without additivity axiom[J]. Mathematical Methods of Operations Research, 2007, 66:255 261. 被引量:1
  • 8Albizuri M J. Axiomatizations of the Owen value without effficiency[J]. Mathematical Social Sciences, 2008, 55: 78-89. 被引量:1
  • 9Albizuri M J, Aurrecoechea J, Zarzuelo J M. Configuration Values: Extensions of the coalitional Owen value[J]. Games and Economic Behaviour, 2006, 57:1 17. 被引量:1
  • 10Faigle U, Kern W, The Shapley value for cooperative games under precedence constraints[J]. International Journal of Game Theory, 1992, 21: 249-266. 被引量:1

共引文献20

同被引文献38

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部