摘要
应用改进地表粗糙度的中尺度模式WRF模拟青藏高原及其周边地区2004-2013年地表湍流通量的变化特征,结果发现,自2004-2013年以来,青藏高原中部和东南部地区感热通量增加,分别增加了9. 952 W·m^-2·(10a)-1和14. 595 W·m^-2·(10a)^-1;青藏高原其他区域感热减小,减少了-4. 473 W·m^-2·(10a)^-1;青藏高原周边东南部横断山脉增加了9. 928 W·m^-2·(10a)^-1,云贵高原地区增加了9. 868 W·m^-2·(10a)^-1和江南丘陵地区增加了15. 177 W·m^-2·(10a)^-1;其他周边地区感热减小,减少的量级为-10. 26 W·m^-2·(10a)^-1。青藏高原东部地区潜热有较弱的增加[1. 175 W·m^-2·(10a)^-1],青藏高原其他区域都减小[-3. 762 W·m^-2·(10a)^-1];青藏高原东侧四川盆地、南侧孟加拉湾附近以及周边北部地区减弱,分别为-0. 27,-2. 416和-2. 287 W·m^-2·(10a)^-1;周边其他地区潜热通量都有不同程度的增加,我国东南部江浙地区有较强的增加[11. 385 W·m^-2·(10a)^-1],印度半岛增加的幅度不大[2. 988 W·m^-2·(10a)^-1],云贵高原以东缅甸增加[9. 287 W·m^-2·(10a)^-1]和黄土高原增加[1. 160 W·m^-2·(10a)^-1],但云贵高原是减少的[-2. 705 W·m^-2·(10a)^-1]。
The mesoscale model WRF with improved surface roughness is used to simulate the variation characteristics of surface turbulent flux over the Qinghai-Tibetan Plateau and its surrounding areas from 2004 to 2013. The results show that sensible heat flux in the central and southeastern parts of the Qinghai-Tibetan Plateau has increased by9. 952 W·m^-2·(10a)^-1 and 14. 595 W·m^-2·(10a)^-1 since 2004 to 2013,respectively,sensible heat in other regions of the Qinghai-Tibetan Plateau decreased by-4. 473 W·m^-2·(10a)^-1. The Hengduan Mountains increased by 9. 928 W·m^-2·(10a)^-1,the Yunnan-Guizhou Plateau increased by 9. 868 W·m^-2·(10a)^-1 and the Jiangnan Hilly Region increased by 15. 177 W·m^-2·(10a)^-1;The sensible heat in other surrounding areas decreased,the order of magnitude is-10. 26 W·m^-2·(10a)^-1. The latent heat increased weakly in the eastern part of the Qinghai-Tibetan Plateau [1. 175 W·m^-2·(10a)^-1],and decreased in other parts of the Qinghai-Tibetan Plateau [-3. 762 W·m^-2·(10a)^-1],and weakened in the Sichuan Basin on the eastern side of the Qinghai-Tibetan Plateau,the Bay of Bengal on the southern side and the surrounding northern areas,respectively,-0. 27,-2. 416 and-2. 287 W·m^-2·(10a)^-1;The latent heat flux increased in different degrees in the surrounding areas. There were strong increases in Jiangsu and Zhejiang provinces in southeastern China [11. 385 W·m^-2·(10a)^-1],increased in Indian Peninsula [2. 988 W·m^-2·(10a)^-1],in Myanmar [9. 287 W·m^-2·(10a)^-1]and in Loess Plateau [1. 160 W·m^-2·(10a)^-1],but decreased in Yunnan-Guizhou Plateau [-2. 705 W·m^-2·(10a)^-1].
作者
李茂善
阴蜀城
刘啸然
吕钊
宋兴宇
马耀明
孙方林
LI Maoshan;YIN Shucheng;LIU Xiaoran;LU Zhao;SONG Xingyu;MA Yaoming;SUN Fanglin(School of Atmospheric Science,Chengdu University of Information Technology,Chengdu 610225,Sichuan,China;Key Laboratory of Tibetan Environment Changes and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,CAS Center for Excellence in TibetanPlateau Earth Sciences,Beijing 100101,China;Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China)
出处
《高原气象》
CSCD
北大核心
2019年第6期1140-1148,共9页
Plateau Meteorology
基金
国家重点研发计划项目(2018YFC1505702)
国家自然科学基金项目(41675106)
第二次青藏高原综合科学考察项目(2019QZKK0103)
成都信息工程大学项目(KYTZ201721)
关键词
青藏高原及其周边地区
湍流通量
年变化
数值模拟
Qinghai-Tibetan Plateau and its surrounding area
turbulent fluxes
annual variation
numerical simulation