期刊文献+

道路场景中基于视频的多目标检测

Multi-target Detection Under Road Scenes Based on Video
下载PDF
导出
摘要 针对复杂道路场景的目标检测难以实现在移动设备上的实时目标检测问题,采用了MobileNet-SSD的目标检测框架,设计了一种用于视频的多目标检测组合网络框架LSTM-SSD。利用视频连续帧的信息时序关联,有效的提高检测的置信度,减少单一图像检测中存在的不稳定问题。通过与VGG-SSD\MobileNet-SSD两种检测网络模型的对比,实验表明,设计的检测网络模型在应对多目标、模糊、遮挡等干扰状况下,均能获得较好的检测效果。该模型的设计,可对无人驾驶实现实时目标检测提供依据和参考。 Aiming at the problem that it is difficult for mobile devices to realize real-time target detection of complex road scenes.based on MobileNet-SSD target detection framework,an LSTM-SSD combined model algorithm for multi-target detection of video is designed.The algorithm takes advantage of the temporal feature of the video to effectively improve the confidence of detection and reduce the instability problem in image detection.Compared with the two detection network models of VGG-SSD\MobileNet-SSD,the results show that the designed detection network model can obtain better detection results under multi-objective,fuzzy,occlusion and other interference conditions.The construction of the model can provide basis and reference for real-time target detection by driverless vehicles.
作者 李明明 雷菊阳 赵从健 LI Ming-ming;LEI Ju-yang;ZHAO Cong-jian(College of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《软件》 2019年第12期140-145,共6页 Software
关键词 视频多目标检测 SSD 时间维度特征 道路场景 Video multi-target detection SSD Temporal feature Road scenes
  • 相关文献

参考文献7

二级参考文献94

  • 1Stephen J. McKenna,Sumer Jabri,Zoran Duric,Azriel Rosenfeld,Harry Wechsler.Tracking Groups of People[J]. Computer Vision and Image Understanding . 2000 (1) 被引量:2
  • 2Pedro F. Felzenszwalb,Daniel P. Huttenlocher.Pictorial Structures for Object Recognition[J]. International Journal of Computer Vision . 2005 (1) 被引量:2
  • 3Zoran Zivkovic,Ferdinand van der Heijden.??Efficient adaptive density estimation per image pixel for the task of background subtraction(J)Pattern Recognition Letters . 2005 (7) 被引量:1
  • 4Stauffer C,Grimson WEL.Learning Patterns of Activity Using Real-Time Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2000 被引量:1
  • 5Felzenszwalb P.F,McAllester D,Ramanan D.A discriminatively trained,multiscale,deformable part model. Proceedings of the 26th IEEE Conference on Computer Vision and Pattern Recognition . 2008 被引量:1
  • 6Barnich O,Droogenbroeck M V.Vibe:A powerful random technique to estimate the background in video sequences. Proceedings of 2009 IEEE International Conference on Acoustics,Speech and Signal Processing . 2009 被引量:1
  • 7Girshick R,Donahue J,Darrell T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition CVPR . 2014 被引量:1
  • 8李琳怡,张海,韩颖婕.??改进的混合高斯法在运动目标检测中的应用(A)第十四届全国图象图形学学术会议论文集(C)2008 被引量:1
  • 9Yali Amit,Alain Trouvé.??POP: Patchwork of Parts Models for Object Recognition(J)International Journal of Computer Vision . 2007 (2) 被引量:1
  • 10N. J. B. McFarlane,C. P. Schofield.??Segmentation and tracking of piglets in images(J)Machine Vision and Applications . 1995 (3) 被引量:1

共引文献298

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部