期刊文献+

机器对机器通信中一种基于能量效率与系统容量的多目标无线资源管理算法 被引量:1

Energy Efficiency and System Capacity Based Multi-Objective Radio Resource Management in M2M Communications
下载PDF
导出
摘要 机器对机器(M2M)通信和设备到设备(D2D)通信都是5G中的关键技术。而M2M通信特别需要考虑提高设备的能量效率(EE)以延长设备的生存周期。该文将M2M技术与D2D技术相结合,考虑M2M设备使用D2D技术进行通信,同时M2M设备复用蜂窝网络中的人对人(H2H)通信的频谱资源。为了同时保证两种系统的服务质量(QoS)需求,建立了最大化M2M的能量效率,最大化H2H系统容量和,以及最小化M2M系统对H2H系统干扰的多目标优化问题(MOOP)。为了解决该问题,采用惩罚函数的方法将二进制变量松弛约束,进而采用凹凸过程(CCCP)方法将非凸的单目标优化问题转化为凸优化问题,并最终通过加权切比雪夫算法得到原多目标优化问题的Pareto最优解。通过与传统的加权和算法进行比较,仿真结果证明了该算法的有效性。 Machine-to-Machine(M2M)and Device-to-Device(D2D)communications are both key technologies in the Fifth Generation(5G)mobile communication systems.In M2M communications,the Energy Efficiency(EE)especially needs to be improved to extend the life cycle of the M2M equipment.In this paper,the M2M and D2D technologies are combined and the D2D technology is used to realize M2M transmission.At the same time,M2M users are allowed to reuse spectrum resources with Human-to-Human(H2H)devices in the cellular networks.To guarantee the Quality of Service(QoS)of these two systems simultaneously,a Multi-Objective Optimization Problem(MOOP)is then formulated to maximize the sum throughput of H2H systems,and the sum EE of M2M systems and to minimize the interference from M2M communications to H2H networks.To solve this MOOP,the penalty function method is firstly adopted to relax the original binary variables,and then the ConCave-Convex Procedure(CCCP)method is used to convert the non-convex single-objective problems into convex problems.Finally,the weighted Tchebyshev algorithm is utilized to obtain the Pareto solution of the original MOOP.By comparing with the traditional weighted sum method,the effectiveness of the proposed method is proved by simulation results.
作者 徐少毅 高帅 XU Shaoyi;GAO Shuai(School of Electronics and Information Engineering,Beijing Jiaotong University,Beijing 100044,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第12期2817-2825,共9页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61571038) 国家科技重大专项(2016ZX03001011-004) 中央高校基本科研业务费专项资金(2016JBZ003)~~
关键词 机器对机器 人对人 多目标优化问题 凹凸过程 加权切比雪夫 Machine-to-Machine(M2M) Human-to-Human(H2H) Multi-Objective Optimization Problem(MOOP) ConCave-Convex Procedure(CCCP) Weighted Tchebyshev
  • 相关文献

参考文献1

二级参考文献26

  • 1Boyd S,Vandenberghe L.Convex Optimization. . 2004 被引量:2
  • 2Laya A,Alonso L,Alonso Z.Is the random access channel of LTE and LTE-A suitable for M2Mcommunications? Asurvey of alternatives. IEEE Communications Surveys and Tutorials . 2014 被引量:1
  • 3D. Bertsekas.Convex Optimization Theory.. . 2009 被引量:1
  • 4J. G. Andrews.'Seven Ways that HetNets Are a Cellular Paradigm Shift,'. IEEE Communications Magazine . 2013 被引量:1
  • 5Siavash Bayat,Yonghui Li,Zhu Han,Mischa Dohler,Branka Vucetic.Distributed Massive Wireless Access for Cellular Machine-to-Machine Communication. Proc of IEEE ICC . 2014 被引量:1
  • 6Han Seung Jang,Su Min Kim,Kab Seok Ko,Jiyoung Cha,Dan Keun Sung.Spatial Group Based Random Access for M2M Communications. IEEE Communications Letters . 2014 被引量:1
  • 7Henning Thomsen,Nuno K Pratas,C edomir Stefanovic,Petar Popovski.Analysis of the LTE Access Reservation Protocol for Real-Time Traffic. IEEE Communications Letters . 2013 被引量:1
  • 8Hamidreza Boostanimehr,Student Member,Vijay K Bhargava.Unified and Distributed QoS-Driven Cell Association Algorithms in Heterogeneous Networks. IEEE Trans.Wireless Commun . 2015 被引量:1
  • 9Walid Saad,Zhu Han,Rong Zheng,Merouane Debbah,H Vincent Poor.A College Admissions Game for Uplink User Association in Wireless Small Cell Networks. Proc.of IEEE INFOCOM . 2014 被引量:1
  • 10Agapi Mesodiakaki,Ferran Adelantado,Luis Alonso,Christos Verikoukis.Joint Uplink and Downlink Cell Selection in Cognitive Small Cell Heterogeneous Networks. Proc of IEEE GLOBECOM . 2014 被引量:1

共引文献1

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部