期刊文献+

白噪声干预下的随机SIQS传染病模型的灭绝性与持久性分析 被引量:2

The Extinction and Persistence of Stochastic SIQS Epidemic Model under White Noise Intervention
下载PDF
导出
摘要 对在白噪声干预下的随机SIQS传染病模型的持久性与灭绝性进行了分析。通过构造合适的Lyapunov函数,利用Ito公式和Markov半群理论等相关随机微分方程的理论知识,研究了随机SIQS传染病模型的动力学行为,得到了传染病模型全局正解的存在唯一性以及疾病持久和灭绝的条件。同时探讨了环境白噪声对疾病爆发的影响,环境噪声会影响疾病的流行,大的白噪声强度会抑制疾病的爆发,并且通过数值模拟验证了所得结果。 In this paper,the extinction and persistence of stochastic SIQS epidemic model under white noise intervention is analyzed.Dynamics behavior of stochastic SIQS epidemic model is studied by constructing suitable Lyapunov function and employing related theoretic knowledge of stochastic differential equations like Ito formula,Markov semigroup theory and so on.The unique existence of global positive solutions and the conditions of disease persistence and extinction are obtained.Meanwhile,the impact of environmental white noise on disease outbreak is explored.The results show that environmental noise will affect the prevalence of disease and higher intensity white noise will suppress disease outbreak.Some numerical simulations are carried out to support the results.
作者 李海燕 韦煜明 彭华勤 LI Haiyan;WEI Yuming;PENG Huaqin(College of Mathematics and Statistics,Guangxi Normal University,Guilin Guangxi 541004,China)
出处 《西华师范大学学报(自然科学版)》 2019年第4期359-366,共8页 Journal of China West Normal University(Natural Sciences)
基金 国家自然科学基金项目(11771104,11701113) 广西自然基金资助项目(2018GXNSFAA294084,2018GXNSFBA281140) 广西研究生教育创新计划项目(XYCSZ2019083,JGY2019030)
关键词 传染病模型 随机基本再生数 Markov半群 灭绝性 持久性 epidemicmodel stochastic basic reproduction number Markov seimigroups extinction persistence
  • 相关文献

参考文献1

二级参考文献12

  • 1Hyman J, Li J. The differential infectivity and staged progression models for the transmission of HIV[J]. Mathematical Biosciences, 1999, 155(2):77-109. 被引量:1
  • 2Jiang D Q, Ji C Y, Shi N Z, Yu J J. The long time behavior of DI SIR epidemic model with stochasitc perturbation[J]. Journal of Mathematical Analysis and Applications, 2010, 372(1):162-180. 被引量:1
  • 3Liu H, Yang Q S, Jiang D Q. The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences[J]. Automa$ica, 2012, 48(5):820-825. 被引量:1
  • 4Ji C Y, Jiang D Q, Yang Q S, Shi N Z. Dynamics of a multigroup SIR epidemic model with stochastic perturbation[J]. Automatica, 2012, 48(1):121-131. 被引量:1
  • 5Lahrouz A, Omari L. Extinction and stationary distribution of a stochastic SIRS epidemic model with nonlinear incidence[J]. Statistics and Probability Letters, 2013, 83(4):960-968. 被引量:1
  • 6Gray A, Greenhalgh D, Hu L, Mao X, Pan J. A stochastic differential equation SIS epidemic model[J]. SIAM Journal on Applied Mathematics, 2011, 71(3):876-902. 被引量:1
  • 7Hu G X, Liu M, Wang K. The asymptotic behaviours of an epidemic model with two correlated stochastic perturbations[J]. Applied Mathematics and Computation, 2012, 218(21):10520-10532. 被引量:1
  • 8Hethcote H, Ma Z E, Liao S B. Effects of quaxantine in six endemic models for infectious diseases[J]. Mathematical Biosciences, 2002, 180(1-2):141-160. 被引量:1
  • 9Gard T C. Introduction to Stochastic Dierential Equations[M]. USA: Marcel Dekker Inc, 1988. 被引量:1
  • 10Zhu C, Yin G. Asymptotic properties of hybrid diffusion systems[J]. SIAM Journal on Control and Opti- mization, 2007, 46(4):1155-1179. 被引量:1

共引文献4

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部